Rostislav Horcík, Á. Torralba, Pavel Rytír, L. Chrpa, S. Edelkamp
{"title":"Optimal Mixed Strategies for Cost-Adversarial Planning Games","authors":"Rostislav Horcík, Á. Torralba, Pavel Rytír, L. Chrpa, S. Edelkamp","doi":"10.1609/icaps.v32i1.19797","DOIUrl":null,"url":null,"abstract":"This paper shows that domain-independent tools from classical planning can be used to model and solve a broad class of game-theoretic problems we call Cost-Adversarial Planning Games (CAPGs). We define CAPGs as 2-player normal-form games specified by a planning task and a finite collection of cost functions. The first player (a planning agent) strives to solve a planning task optimally but has limited knowledge about its action costs. The second player (an adversary agent) controls the actual action costs. Even though CAPGs need not be zero-sum, every CAPG has an associated zero-sum game whose Nash equilibrium provides the optimal randomized strategy for the planning agent in the original CAPG. We show how to find the Nash equilibrium of the associated zero-sum game using a cost-optimal planner via the Double Oracle algorithm. To demonstrate the expressivity of CAPGs, we formalize a patrolling security game and several IPC domains as CAPGs.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper shows that domain-independent tools from classical planning can be used to model and solve a broad class of game-theoretic problems we call Cost-Adversarial Planning Games (CAPGs). We define CAPGs as 2-player normal-form games specified by a planning task and a finite collection of cost functions. The first player (a planning agent) strives to solve a planning task optimally but has limited knowledge about its action costs. The second player (an adversary agent) controls the actual action costs. Even though CAPGs need not be zero-sum, every CAPG has an associated zero-sum game whose Nash equilibrium provides the optimal randomized strategy for the planning agent in the original CAPG. We show how to find the Nash equilibrium of the associated zero-sum game using a cost-optimal planner via the Double Oracle algorithm. To demonstrate the expressivity of CAPGs, we formalize a patrolling security game and several IPC domains as CAPGs.