Collective Decision for Open Set Recognition (Extended Abstract)

Chuanxing Geng, Songcan Chen
{"title":"Collective Decision for Open Set Recognition (Extended Abstract)","authors":"Chuanxing Geng, Songcan Chen","doi":"10.1109/ICDE55515.2023.00313","DOIUrl":null,"url":null,"abstract":"In open set recognition (OSR), almost all existing methods are designed specially for recognizing individual instances, even these instances are collectively coming in batch. Recognizers in decision either reject or categorize them to some known class using empirically-set threshold. Thus the decision threshold plays a key role. However, the selection for it usually depends on the knowledge of known classes, inevitably incurring risks due to lacking available information from unknown classes. On the other hand, a more realistic OSR system should NOT just rest on a reject decision but should go further, especially for discovering the hidden unknown classes among the reject instances, whereas existing OSR methods do not pay special attention. In this paper, we introduce a novel collective/batch decision strategy with an aim to extend existing OSR for new class discovery while considering correlations among the testing instances. Specifically, a collective decision-based OSR framework (CD-OSR) is proposed by slightly modifying the Hierarchical Dirichlet process (HDP). Thanks to HDP, our CD-OSR does not need to define the decision threshold and can implement the open set recognition and new class discovery simultaneously. Finally, extensive experiments on benchmark datasets indicate the validity of CD-OSR.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"2022 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In open set recognition (OSR), almost all existing methods are designed specially for recognizing individual instances, even these instances are collectively coming in batch. Recognizers in decision either reject or categorize them to some known class using empirically-set threshold. Thus the decision threshold plays a key role. However, the selection for it usually depends on the knowledge of known classes, inevitably incurring risks due to lacking available information from unknown classes. On the other hand, a more realistic OSR system should NOT just rest on a reject decision but should go further, especially for discovering the hidden unknown classes among the reject instances, whereas existing OSR methods do not pay special attention. In this paper, we introduce a novel collective/batch decision strategy with an aim to extend existing OSR for new class discovery while considering correlations among the testing instances. Specifically, a collective decision-based OSR framework (CD-OSR) is proposed by slightly modifying the Hierarchical Dirichlet process (HDP). Thanks to HDP, our CD-OSR does not need to define the decision threshold and can implement the open set recognition and new class discovery simultaneously. Finally, extensive experiments on benchmark datasets indicate the validity of CD-OSR.
开放集识别的集体决策(扩展摘要)
在开放集识别(OSR)中,几乎所有现有的方法都是专门为识别单个实例而设计的,即使这些实例是批处理的。识别器在决策时要么拒绝它们,要么使用经验设定的阈值将它们分类到已知的类别。因此,决策阈值起着关键的作用。然而,它的选择通常依赖于已知类别的知识,由于缺乏未知类别的可用信息,不可避免地会产生风险。另一方面,一个更现实的OSR系统不应该仅仅依赖于拒绝决策,而应该更进一步,特别是在发现拒绝实例中隐藏的未知类,而现有的OSR方法并没有特别注意。在本文中,我们引入了一种新的集体/批决策策略,目的是在考虑测试实例之间的相关性的同时,扩展现有的OSR以发现新的类。具体而言,通过对分层狄利克雷过程(HDP)的轻微修改,提出了一个基于集体决策的OSR框架(CD-OSR)。得益于HDP,我们的CD-OSR不需要定义决策阈值,可以同时实现开放集识别和新类发现。最后,在基准数据集上进行了大量实验,验证了CD-OSR的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信