{"title":"Securing SCADA networks for smart grids via a distributed evaluation of local sensor data","authors":"Verena Menzel, J. Hurink, Anne Remke","doi":"10.1109/SmartGridComm51999.2021.9632283","DOIUrl":null,"url":null,"abstract":"Within smart grids the safe and dependable distribution of electric power highly depends on the security of Supervisory Control and Data Acquisition (SCADA) systems and their underlying communication protocols. Existing network-based intrusion detection systems for Industrial Control Systems (ICS) are usually centrally applied at the SCADA server and do not take the underlying physical process into account. A recent line of work proposes an additional layer of security via a process-aware approach applied locally at the field stations. This paper broadens the scope of process-aware monitoring by considering the interaction between neighboring field stations, which facilitates upcoming trends of decentralized energy management (DEM). Local security monitoring is lifted to monitoring neighborhoods of field stations, therefore achieving a broader grid coverage w.r.t. security. We provide a distributed monitoring algorithm of the generated sensory readings for this extended setting. The feasibility of the approach is shown via a prototype simulation testbed and a scenario with two subgrids.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Within smart grids the safe and dependable distribution of electric power highly depends on the security of Supervisory Control and Data Acquisition (SCADA) systems and their underlying communication protocols. Existing network-based intrusion detection systems for Industrial Control Systems (ICS) are usually centrally applied at the SCADA server and do not take the underlying physical process into account. A recent line of work proposes an additional layer of security via a process-aware approach applied locally at the field stations. This paper broadens the scope of process-aware monitoring by considering the interaction between neighboring field stations, which facilitates upcoming trends of decentralized energy management (DEM). Local security monitoring is lifted to monitoring neighborhoods of field stations, therefore achieving a broader grid coverage w.r.t. security. We provide a distributed monitoring algorithm of the generated sensory readings for this extended setting. The feasibility of the approach is shown via a prototype simulation testbed and a scenario with two subgrids.