A Vector Implementation of Gaussian Elimination over GF(2): Exploring the Design-Space of Strassen's Algorithm as a Case Study

E. Morancho
{"title":"A Vector Implementation of Gaussian Elimination over GF(2): Exploring the Design-Space of Strassen's Algorithm as a Case Study","authors":"E. Morancho","doi":"10.1109/PDP.2015.24","DOIUrl":null,"url":null,"abstract":"Gaussian elimination is a key algorithm in linear algebra. It has many usages, for instance solving systems of linear equations and determining whether a set of vectors is linearly independent. This algorithm transforms an input matrix into a matrix in row (column) echelon form. The matrix entries and the transformations are defined over algebraic fields either infinite (e.g. the real numbers) or finite (e.g. GF (2)). This work discusses a vector implementation of this algorithm over GF (2). The evaluation develops a case study that searches exhaustively for algorithms over GF (2) similar to Strassen's algorithm (a matrix-multiply algorithm with sub cubic complexity) because the search engine requires solving a huge number of Gaussian eliminations over GF (2). Our vector implementation allows the search engine to complete the exploration in less than nine hours on a commodity processor supporting AVX2, outperforming by 1.92X a scalar-SWAR implementation specialized for the case study and by 7.43X a generic scalar-SWAR implementation. Our results show that, over GF (2), there are 20 algorithms similar to Strassen's.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gaussian elimination is a key algorithm in linear algebra. It has many usages, for instance solving systems of linear equations and determining whether a set of vectors is linearly independent. This algorithm transforms an input matrix into a matrix in row (column) echelon form. The matrix entries and the transformations are defined over algebraic fields either infinite (e.g. the real numbers) or finite (e.g. GF (2)). This work discusses a vector implementation of this algorithm over GF (2). The evaluation develops a case study that searches exhaustively for algorithms over GF (2) similar to Strassen's algorithm (a matrix-multiply algorithm with sub cubic complexity) because the search engine requires solving a huge number of Gaussian eliminations over GF (2). Our vector implementation allows the search engine to complete the exploration in less than nine hours on a commodity processor supporting AVX2, outperforming by 1.92X a scalar-SWAR implementation specialized for the case study and by 7.43X a generic scalar-SWAR implementation. Our results show that, over GF (2), there are 20 algorithms similar to Strassen's.
GF(2)上高斯消去的矢量实现:以Strassen算法的设计空间为例
高斯消去算法是线性代数中的一个关键算法。它有很多用途,例如求解线性方程组和确定一组向量是否线性无关。该算法将输入矩阵转换成行(列)阶梯形矩阵。矩阵项和变换是在无穷(如实数)或有限(如GF(2))的代数域上定义的。这项工作讨论了该算法在GF(2)上的矢量实现。评估开发了一个案例研究,该案例研究详尽地搜索GF(2)上的算法,类似于Strassen算法(具有次立方复杂度的矩阵乘法算法),因为搜索引擎需要在GF(2)上解决大量的高斯消去。我们的矢量实现允许搜索引擎在支持AVX2的商用处理器上在不到9小时内完成搜索。比专门用于案例研究的标量- swar实现高出1.92倍,比通用的标量- swar实现高出7.43倍。我们的结果表明,在GF(2)上,有20个类似Strassen的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信