Grey SVM with Simulated Annealing Algorithms in Patent Application Filings Forecasting

Sheng Xu, Hui-Fang Zhao, Yang Xie
{"title":"Grey SVM with Simulated Annealing Algorithms in Patent Application Filings Forecasting","authors":"Sheng Xu, Hui-Fang Zhao, Yang Xie","doi":"10.1109/CIS.WORKSHOPS.2007.127","DOIUrl":null,"url":null,"abstract":"The patent applications filings (PAF) are complex to conduct due to its nonlinearity of influenced factors. In this study, a grey support vector machines with simulated annealing algorithms (GSVMS) is proposed to forecast PAF. In addition, GM (1, N) model of grey system is used to add a grey layer before neural input layer and white layer after SVM layer. Simulated annealing algorithms (SA) are used to determine free parameters of support vector machines. Evaluation method has been used for comparing the performance of forecasting techniques. The experiments show that the GSVMS model is outperformed GM (1, N) model and SVM with simulated annealing algorithms (SVMS) model, and PAF forecasting based on GSVMS is of validity and feasibility.","PeriodicalId":409737,"journal":{"name":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.WORKSHOPS.2007.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The patent applications filings (PAF) are complex to conduct due to its nonlinearity of influenced factors. In this study, a grey support vector machines with simulated annealing algorithms (GSVMS) is proposed to forecast PAF. In addition, GM (1, N) model of grey system is used to add a grey layer before neural input layer and white layer after SVM layer. Simulated annealing algorithms (SA) are used to determine free parameters of support vector machines. Evaluation method has been used for comparing the performance of forecasting techniques. The experiments show that the GSVMS model is outperformed GM (1, N) model and SVM with simulated annealing algorithms (SVMS) model, and PAF forecasting based on GSVMS is of validity and feasibility.
灰色支持向量机模拟退火算法在专利申请预测中的应用
由于影响因素的非线性,专利申请的处理十分复杂。本研究提出一种灰色支持向量机模拟退火算法(GSVMS)来预测PAF。采用灰色系统GM (1, N)模型,在神经输入层前加灰色层,在支持向量机层后加白色层。采用模拟退火算法(SA)确定支持向量机的自由参数。采用评价方法对预测技术的性能进行了比较。实验表明,GSVMS模型优于GM (1, N)模型和基于模拟退火算法(SVMS)模型的SVM,基于GSVMS的PAF预测是有效和可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信