Preliminary Automatic Analysis of Characteristics of Hypespectral Aviris Images

N. Ponomarenko, V. Lukin, M. Zriakhov, A. Kaarna
{"title":"Preliminary Automatic Analysis of Characteristics of Hypespectral Aviris Images","authors":"N. Ponomarenko, V. Lukin, M. Zriakhov, A. Kaarna","doi":"10.1109/MMET.2006.1689730","DOIUrl":null,"url":null,"abstract":"The need to perform analysis and processing hyperspectral images registered by AVIRIS imager is stated. AVIRIS system basic characteristics are briefly discussed. Then, novel approaches and robust methods for estimation of noise variance and signal-to-noise ratios in band images are proposed. Using them, real life sets of AVIRIS images are analyzed. The basic dependences and conclusions following from the carried out study are presented and considered. Some examples showing that some band images are worth denoising are presented. The methods well suited for this purpose are recommended. Possible approaches to hyperspectral data compression are also discussed","PeriodicalId":236672,"journal":{"name":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2006.1689730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The need to perform analysis and processing hyperspectral images registered by AVIRIS imager is stated. AVIRIS system basic characteristics are briefly discussed. Then, novel approaches and robust methods for estimation of noise variance and signal-to-noise ratios in band images are proposed. Using them, real life sets of AVIRIS images are analyzed. The basic dependences and conclusions following from the carried out study are presented and considered. Some examples showing that some band images are worth denoising are presented. The methods well suited for this purpose are recommended. Possible approaches to hyperspectral data compression are also discussed
高光谱病毒图像特征的初步自动分析
阐述了对AVIRIS成像仪配准的高光谱图像进行分析和处理的必要性。简要讨论了AVIRIS系统的基本特点。在此基础上,提出了噪声方差和信噪比估计的新方法和鲁棒性方法。利用它们,对现实生活中的AVIRIS图像集进行了分析。提出并考虑了所进行研究的基本依赖关系和结论。给出了一些值得去噪的带图实例。本文推荐了非常适合于此目的的方法。对高光谱数据压缩的可能方法也进行了讨论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信