Design of Class in Unknown Object Segmentation Focusing on 3D Object Detection in Depth Image

Tatsuya Amemiya, T. Tasaki
{"title":"Design of Class in Unknown Object Segmentation Focusing on 3D Object Detection in Depth Image","authors":"Tatsuya Amemiya, T. Tasaki","doi":"10.1109/IEEECONF49454.2021.9382606","DOIUrl":null,"url":null,"abstract":"We aim to improve unknown object detection. We also deal with problem of designing the optimal class for semantic segmentation using depth image. There was a problem that unknown classes of obstacles were mistaken for road in semantic segmentation using depth image. Therefore, we focus on the superiority of 3D object detection in a depth image. The depth image is good at separating between horizontal plane and 3D objects. For this reason, we develop a method for changing the number of training classes from baseline 12 classes to new 3 classes (void, plane, 3D object) for segmentation, which are optimal to detect unknown object by using depth images. As a result, IoU of unknown obstacle improve +6.9point than baseline method.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We aim to improve unknown object detection. We also deal with problem of designing the optimal class for semantic segmentation using depth image. There was a problem that unknown classes of obstacles were mistaken for road in semantic segmentation using depth image. Therefore, we focus on the superiority of 3D object detection in a depth image. The depth image is good at separating between horizontal plane and 3D objects. For this reason, we develop a method for changing the number of training classes from baseline 12 classes to new 3 classes (void, plane, 3D object) for segmentation, which are optimal to detect unknown object by using depth images. As a result, IoU of unknown obstacle improve +6.9point than baseline method.
基于深度图像三维目标检测的未知目标分割类设计
我们的目标是改进未知目标检测。本文还讨论了深度图像语义分割的最优类的设计问题。在深度图像语义分割中,存在将未知类别的障碍物误认为道路的问题。因此,我们关注的是深度图像中三维目标检测的优越性。深度图像对水平面和三维物体的分离效果较好。为此,我们开发了一种方法,将训练类别的数量从基线的12个类别更改为新的3个类别(虚空,平面,3D物体)进行分割,这是使用深度图像检测未知物体的最佳方法。结果未知障碍IoU较基线法提高+6.9分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信