A Clustering-Based Approach to Predict Outcome in Cancer Patients

Kai Xing, D. Henson, Dechang Chen, Li Sheng
{"title":"A Clustering-Based Approach to Predict Outcome in Cancer Patients","authors":"Kai Xing, D. Henson, Dechang Chen, Li Sheng","doi":"10.1109/ICMLA.2007.20","DOIUrl":null,"url":null,"abstract":"The TNM (tumor, lymph node, metastasis) is a widely used staging system for predicting the outcome of cancer patients. However, the TNM is not accurate in prediction, partially due to the fact of deficient staging within and between stages. Based on the availability of large cancer patient datasets, there is a need to expand the TNM. In this paper, we present a general clustering-based approach to accomplish this task of expansion. This approach admits multiple factors. One major advantage of the approach is that patients within each generated group are homogeneous in terms of survival, so that a more accurate prediction of outcome of patients can be made. A demonstration of use of the proposed method is given for breast cancer patients.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The TNM (tumor, lymph node, metastasis) is a widely used staging system for predicting the outcome of cancer patients. However, the TNM is not accurate in prediction, partially due to the fact of deficient staging within and between stages. Based on the availability of large cancer patient datasets, there is a need to expand the TNM. In this paper, we present a general clustering-based approach to accomplish this task of expansion. This approach admits multiple factors. One major advantage of the approach is that patients within each generated group are homogeneous in terms of survival, so that a more accurate prediction of outcome of patients can be made. A demonstration of use of the proposed method is given for breast cancer patients.
基于聚类的方法预测癌症患者预后
TNM(肿瘤、淋巴结、转移)是一种广泛使用的预测癌症患者预后的分期系统。然而,TNM的预测并不准确,部分原因是分期内和分期之间存在分期缺陷。基于大量癌症患者数据集的可用性,有必要扩展TNM。在本文中,我们提出了一种通用的基于聚类的方法来完成这一扩展任务。这种方法承认多种因素。该方法的一个主要优点是,每个生成组中的患者在生存方面是均匀的,因此可以更准确地预测患者的结果。对乳腺癌患者进行了使用该方法的示范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信