Linear acoustic echo cancellation using deep neural networks and convex reconstruction of incomplete transfer function

Michael Müller, Jakub Janský, M. Bohac, Zbyněk Koldovský
{"title":"Linear acoustic echo cancellation using deep neural networks and convex reconstruction of incomplete transfer function","authors":"Michael Müller, Jakub Janský, M. Bohac, Zbyněk Koldovský","doi":"10.1109/ECMSM.2017.7945913","DOIUrl":null,"url":null,"abstract":"Linear acoustic path estimation for acoustic echo cancellation is difficult during periods where the near-end signal (speech) is active. In this paper, we assume that the impulse response is sparse. There are many algorithms that solve the problem of estimating sparse impulse response in the time domain. In this paper, we propose algorithms working in the time-frequency domain. In our approach, it is assumed that the respective transfer function can be estimated only for those frequencies where the near-end signal is not active. First, a deep neural network trained on mixed signals is used to detect the activity of the near-end signal. In frequencies where no activity is detected, the acoustic transfer function is estimated using conventional frequency domain least squares. This results in an incomplete transfer function (ITF) estimate. The completion is done through finding the sparsest representation of the ITF in the time domain. This can be done adaptively using the soft-threshold function, which is applied in the time domain. To achieve improved accuracy, oversampling can be used.","PeriodicalId":358140,"journal":{"name":"2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMSM.2017.7945913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Linear acoustic path estimation for acoustic echo cancellation is difficult during periods where the near-end signal (speech) is active. In this paper, we assume that the impulse response is sparse. There are many algorithms that solve the problem of estimating sparse impulse response in the time domain. In this paper, we propose algorithms working in the time-frequency domain. In our approach, it is assumed that the respective transfer function can be estimated only for those frequencies where the near-end signal is not active. First, a deep neural network trained on mixed signals is used to detect the activity of the near-end signal. In frequencies where no activity is detected, the acoustic transfer function is estimated using conventional frequency domain least squares. This results in an incomplete transfer function (ITF) estimate. The completion is done through finding the sparsest representation of the ITF in the time domain. This can be done adaptively using the soft-threshold function, which is applied in the time domain. To achieve improved accuracy, oversampling can be used.
基于深度神经网络和不完全传递函数凸重构的线性声回波消除
在近端信号(语音)活跃时,声回波消除的线性声路估计是困难的。在本文中,我们假设脉冲响应是稀疏的。目前已有许多算法解决时域稀疏脉冲响应的估计问题。在本文中,我们提出了在时频域中工作的算法。在我们的方法中,假设只有在近端信号不活跃的频率下才能估计相应的传递函数。首先,利用混合信号训练的深度神经网络检测近端信号的活动。在没有检测到活动的频率中,使用常规频域最小二乘估计声学传递函数。这将导致不完全传递函数(ITF)估计。完成是通过在时域中找到最稀疏的ITF表示来完成的。这可以使用软阈值函数自适应地完成,该函数应用于时域。为了提高精度,可以使用过采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信