E. Piuzzi, A. Capuano, S. Pisa, P. Cappa, F. Patané, S. Rossi, N. Giaquinto, G. M. D'Aucelli
{"title":"Impedance plethysmography system with inertial measurement units for motion artefact reduction: Application to continuous breath activity monitoring","authors":"E. Piuzzi, A. Capuano, S. Pisa, P. Cappa, F. Patané, S. Rossi, N. Giaquinto, G. M. D'Aucelli","doi":"10.1109/MeMeA.2015.7145233","DOIUrl":null,"url":null,"abstract":"This paper presents an impedance plethysmography system suitable to perform a continuous monitoring of human breath activity. The problem of motion artifact is mitigated through the use of a correction technique exploiting an additional inertial sensor able to detect movements of the arms of the subject under test. The correction algorithm is based on a simple correlation technique and only requires a very brief training at the beginning of the acquisition session, with the monitored subject performing random movements in apnea condition. Application of the proposed system to a healthy adult volunteer demonstrates the potentiality of the correction algorithm, which, thanks to its extreme simplicity and low computational cost, is a suitable candidate for implementation in a low-cost and portable monitoring system.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2015.7145233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents an impedance plethysmography system suitable to perform a continuous monitoring of human breath activity. The problem of motion artifact is mitigated through the use of a correction technique exploiting an additional inertial sensor able to detect movements of the arms of the subject under test. The correction algorithm is based on a simple correlation technique and only requires a very brief training at the beginning of the acquisition session, with the monitored subject performing random movements in apnea condition. Application of the proposed system to a healthy adult volunteer demonstrates the potentiality of the correction algorithm, which, thanks to its extreme simplicity and low computational cost, is a suitable candidate for implementation in a low-cost and portable monitoring system.