Comparative study of modern convolutional neural networks for smoke detection on image data

A. Filonenko, Laksono Kurnianggoro, K. Jo
{"title":"Comparative study of modern convolutional neural networks for smoke detection on image data","authors":"A. Filonenko, Laksono Kurnianggoro, K. Jo","doi":"10.1109/HSI.2017.8004998","DOIUrl":null,"url":null,"abstract":"This work evaluates modern convolutional neural networks (CNN) for the task of smoke detection on image data. The networks that were tested are AlexNet, Inception-V3, Inception-V4, ResNet, VGG, and Xception. They all have shown high performance on huge ImageNet dataset, but the possibility of using such CNNs needed to be checked for a very specific task of smoke detection with a high diversity of possible scenarios and a small available dataset. Experimental results have shown that inception-based networks reach high performance when samples in the training dataset cover enough scenarios while accuracy dramatically drops when older networks are utilized.","PeriodicalId":355011,"journal":{"name":"2017 10th International Conference on Human System Interactions (HSI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Conference on Human System Interactions (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2017.8004998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This work evaluates modern convolutional neural networks (CNN) for the task of smoke detection on image data. The networks that were tested are AlexNet, Inception-V3, Inception-V4, ResNet, VGG, and Xception. They all have shown high performance on huge ImageNet dataset, but the possibility of using such CNNs needed to be checked for a very specific task of smoke detection with a high diversity of possible scenarios and a small available dataset. Experimental results have shown that inception-based networks reach high performance when samples in the training dataset cover enough scenarios while accuracy dramatically drops when older networks are utilized.
基于图像数据的现代卷积神经网络烟雾检测的比较研究
这项工作评估了现代卷积神经网络(CNN)在图像数据上的烟雾检测任务。测试的网络包括AlexNet、Inception-V3、Inception-V4、ResNet、VGG和Xception。它们都在巨大的ImageNet数据集上表现出了高性能,但是使用这种cnn的可能性需要在一个非常具体的任务中进行检查,该任务具有高度多样性的可能场景和一个小的可用数据集。实验结果表明,当训练数据集中的样本覆盖足够的场景时,基于初始化的网络达到高性能,而当使用较旧的网络时,准确率急剧下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信