{"title":"Point Cloud Clustering Using Panoramic Layered Range Image","authors":"M. Nakagawa, Kounosuke Kataoka, Shouta Ouma","doi":"10.5772/INTECHOPEN.76407","DOIUrl":null,"url":null,"abstract":"Point-cloud clustering is an essential technique for modeling massive point clouds acquired with a laser scanner. There are three clustering approaches in point-cloud clustering, namely model-based clustering, edge-based clustering, and region-based clus- tering. In geoinformatics, edge-based and region-based clustering are often applied for the modeling of buildings and roads. These approaches use low-resolution point-cloud data that consist of tens of points or several hundred points per m 2 , such as aerial laser scanning data and vehicle-borne mobile mapping system data. These approaches also focus on geometrical knowledge and restrictions. We focused on region-based point-cloud clustering to improve 3D visualization and modeling using massive point clouds. We proposed a point-cloud clustering methodology and point-cloud filtering on a mul tilayered panoramic range image. A point-based rendering approach was applied for the range image generation using a massive point cloud. Moreover, we conducted three experiments to verify our methodology.","PeriodicalId":236959,"journal":{"name":"Recent Applications in Data Clustering","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Applications in Data Clustering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Point-cloud clustering is an essential technique for modeling massive point clouds acquired with a laser scanner. There are three clustering approaches in point-cloud clustering, namely model-based clustering, edge-based clustering, and region-based clus- tering. In geoinformatics, edge-based and region-based clustering are often applied for the modeling of buildings and roads. These approaches use low-resolution point-cloud data that consist of tens of points or several hundred points per m 2 , such as aerial laser scanning data and vehicle-borne mobile mapping system data. These approaches also focus on geometrical knowledge and restrictions. We focused on region-based point-cloud clustering to improve 3D visualization and modeling using massive point clouds. We proposed a point-cloud clustering methodology and point-cloud filtering on a mul tilayered panoramic range image. A point-based rendering approach was applied for the range image generation using a massive point cloud. Moreover, we conducted three experiments to verify our methodology.