Text Classification Based on Title Semantic Information

Y. Liu, Qi Xu, Chunya Wang
{"title":"Text Classification Based on Title Semantic Information","authors":"Y. Liu, Qi Xu, Chunya Wang","doi":"10.1109/ICIIBMS50712.2020.9336401","DOIUrl":null,"url":null,"abstract":"with the rapid development of big data technology, text classification plays an important role in practical application, its applications span a wide range of activities such as sentiment analysis, spam detection, etc. Traditionally, we model the relationship between document and label. However, in many scenarios, document have specific relationship with corresponding title. Inspired by this, a text classification model based on title Semantic Information is proposed in this study. In our model, long short-term memory(LSTM)is used to learn title embedding, document embedding is obtained by using promoted LSTM(TS-LSTM) which take into account the title information. The experimental results on the standard text classification datasets show that its performance is better than the existing state-of-the-art text classification algorithms.","PeriodicalId":243033,"journal":{"name":"2020 5th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS50712.2020.9336401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

with the rapid development of big data technology, text classification plays an important role in practical application, its applications span a wide range of activities such as sentiment analysis, spam detection, etc. Traditionally, we model the relationship between document and label. However, in many scenarios, document have specific relationship with corresponding title. Inspired by this, a text classification model based on title Semantic Information is proposed in this study. In our model, long short-term memory(LSTM)is used to learn title embedding, document embedding is obtained by using promoted LSTM(TS-LSTM) which take into account the title information. The experimental results on the standard text classification datasets show that its performance is better than the existing state-of-the-art text classification algorithms.
基于标题语义信息的文本分类
随着大数据技术的飞速发展,文本分类在实际应用中发挥着重要作用,其应用范围广泛,如情感分析、垃圾邮件检测等。传统上,我们对文档和标签之间的关系进行建模。然而,在许多情况下,文档与相应的标题有特定的关系。受此启发,本文提出了一种基于标题语义信息的文本分类模型。在我们的模型中,使用长短期记忆(LSTM)来学习标题嵌入,使用考虑标题信息的改进LSTM(TS-LSTM)来获得文档嵌入。在标准文本分类数据集上的实验结果表明,该算法的性能优于现有的最先进的文本分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信