Efficient Instrumentation of GPGPU Applications Using Information Flow Analysis and Symbolic Execution

N. Farooqui, K. Schwan, S. Yalamanchili
{"title":"Efficient Instrumentation of GPGPU Applications Using Information Flow Analysis and Symbolic Execution","authors":"N. Farooqui, K. Schwan, S. Yalamanchili","doi":"10.1145/2588768.2576782","DOIUrl":null,"url":null,"abstract":"Dynamic instrumentation of GPGPU binaries makes possible real-time introspection methods for performance debugging, correctness checks, workload characterization, and runtime optimization. Such instrumentation involves inserting code at the instruction level of an application, while the application is running, thereby able to accurately profile data-dependent application behavior. Runtime overheads seen from instrumentation, however, can obviate its utility. This paper shows how a combination of information flow analysis and symbolic execution can be used to alleviate these overheads. The methods and their effectiveness are demonstrated for a variety of GPGPU codes written in OpenCL that run on AMD GPU target backends. Kernels that can be analyzed entirely via symbolic execution need not be instrumented, thus eliminating kernel runtime overheads altogether. For the remaining GPU kernels, our results show 5-38% improvements in kernel runtime overheads.","PeriodicalId":394600,"journal":{"name":"Proceedings of Workshop on General Purpose Processing Using GPUs","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Workshop on General Purpose Processing Using GPUs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2588768.2576782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Dynamic instrumentation of GPGPU binaries makes possible real-time introspection methods for performance debugging, correctness checks, workload characterization, and runtime optimization. Such instrumentation involves inserting code at the instruction level of an application, while the application is running, thereby able to accurately profile data-dependent application behavior. Runtime overheads seen from instrumentation, however, can obviate its utility. This paper shows how a combination of information flow analysis and symbolic execution can be used to alleviate these overheads. The methods and their effectiveness are demonstrated for a variety of GPGPU codes written in OpenCL that run on AMD GPU target backends. Kernels that can be analyzed entirely via symbolic execution need not be instrumented, thus eliminating kernel runtime overheads altogether. For the remaining GPU kernels, our results show 5-38% improvements in kernel runtime overheads.
利用信息流分析和符号执行实现GPGPU应用程序的高效检测
GPGPU二进制文件的动态检测使性能调试、正确性检查、工作负载表征和运行时优化的实时自省方法成为可能。这种检测包括在应用程序运行时在应用程序的指令级别插入代码,从而能够准确地分析依赖于数据的应用程序行为。然而,从检测中看到的运行时开销可能会消除它的实用性。本文展示了如何使用信息流分析和符号执行的组合来减轻这些开销。通过在AMD GPU目标后端上运行的OpenCL编写的各种GPGPU代码,验证了这些方法及其有效性。可以完全通过符号执行进行分析的内核不需要进行检测,从而完全消除了内核运行时开销。对于剩余的GPU内核,我们的结果显示内核运行时开销改善了5-38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信