M. Subedi, Carlos Portillo-Quintero, S. Kahl, N. McIntyre, R. Cox, Gad Perry
{"title":"Leveraging NAIP Imagery for Accurate Large-Area Land Use/land Cover Mapping: A Case Study in Central Texas","authors":"M. Subedi, Carlos Portillo-Quintero, S. Kahl, N. McIntyre, R. Cox, Gad Perry","doi":"10.14358/pers.22-00123r2","DOIUrl":null,"url":null,"abstract":"Large-area land use land cover (LULC) mapping using high-resolution imagery remains challenging due to radiometric differences between scenes, the low spectral depth of the imagery, landscape heterogeneity, and computational limitations. Using a random forest (RF)- supervised machine-learning\n algorithm, we present a geographic object-based image analysis approach to classifying a large mosaic of 220 National Agriculture Imagery Program orthoimagery into lulc categories. The approach was applied in central Texas, USA, covering over 6000 km2. We generated 36 variables for each object\n and accounted for spatial structures of sample data to determine the distance at which samples were spatially independent. The final rf model produced 94.8% accuracy on independent stratified random samples. In addition, vegetation and water indices, the mean and standard deviation of principal\n components, and texture features improved classification accuracy. This study demonstrates a cost-effective way of producing an accurate multi-class land use/land cover map using high-spatial/low-spectral resolution orthoimagery.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00123r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Large-area land use land cover (LULC) mapping using high-resolution imagery remains challenging due to radiometric differences between scenes, the low spectral depth of the imagery, landscape heterogeneity, and computational limitations. Using a random forest (RF)- supervised machine-learning
algorithm, we present a geographic object-based image analysis approach to classifying a large mosaic of 220 National Agriculture Imagery Program orthoimagery into lulc categories. The approach was applied in central Texas, USA, covering over 6000 km2. We generated 36 variables for each object
and accounted for spatial structures of sample data to determine the distance at which samples were spatially independent. The final rf model produced 94.8% accuracy on independent stratified random samples. In addition, vegetation and water indices, the mean and standard deviation of principal
components, and texture features improved classification accuracy. This study demonstrates a cost-effective way of producing an accurate multi-class land use/land cover map using high-spatial/low-spectral resolution orthoimagery.