Spindle Density Analysis of Adult Epilepsy based on Automatic Detection Algorithms in EEG

Yajin Huang, Yanjun Liu, Junqiang Li, Yan Yue, Yaqing Liu, Tiancheng Wang
{"title":"Spindle Density Analysis of Adult Epilepsy based on Automatic Detection Algorithms in EEG","authors":"Yajin Huang, Yanjun Liu, Junqiang Li, Yan Yue, Yaqing Liu, Tiancheng Wang","doi":"10.1145/3570773.3570804","DOIUrl":null,"url":null,"abstract":"Electrophysiological investigations of sleep provide an important advantage for recording spontaneous neural activity and quantifying brain function. This study combined artificial intelligence technology to quantitatively analyze spindle density in adult patients with epilepsy. All patients received one-night sleep electroencephalogram monitoring. We employed a convolutional neural network-based sleep staging system to predict sleep macrostructure. Then we applied two species of advanced algorithms: Spindler and Latent state spindle detector, to automatically detect sleep spindle during non-rapid eye movement sleep stage 2. And we calculated three kinds of frequency range spindle density involving 11-17 Hz, 9-12 Hz, and 12-15 Hz. Our results suggested that 11-17 Hz and 12-15 Hz spindle density in adult epilepsy predominated in parietal and 9-12 Hz spindle density in prefrontal regions.","PeriodicalId":153475,"journal":{"name":"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3570773.3570804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrophysiological investigations of sleep provide an important advantage for recording spontaneous neural activity and quantifying brain function. This study combined artificial intelligence technology to quantitatively analyze spindle density in adult patients with epilepsy. All patients received one-night sleep electroencephalogram monitoring. We employed a convolutional neural network-based sleep staging system to predict sleep macrostructure. Then we applied two species of advanced algorithms: Spindler and Latent state spindle detector, to automatically detect sleep spindle during non-rapid eye movement sleep stage 2. And we calculated three kinds of frequency range spindle density involving 11-17 Hz, 9-12 Hz, and 12-15 Hz. Our results suggested that 11-17 Hz and 12-15 Hz spindle density in adult epilepsy predominated in parietal and 9-12 Hz spindle density in prefrontal regions.
基于脑电自动检测算法的成人癫痫纺锤体密度分析
睡眠电生理研究为记录自发神经活动和量化脑功能提供了重要的优势。本研究结合人工智能技术对成人癫痫患者的纺锤体密度进行定量分析。所有患者均接受一晚睡眠脑电图监测。我们采用基于卷积神经网络的睡眠分期系统来预测睡眠宏观结构。然后应用Spindler和Latent state spindle detector两种先进算法,对非快速眼动睡眠阶段2的睡眠纺锤波进行自动检测。计算了11- 17hz、9- 12hz和12- 15hz三种频率范围的主轴密度。结果表明,成人癫痫患者11-17 Hz和12-15 Hz纺锤波密度主要分布在顶叶区,9-12 Hz纺锤波密度主要分布在前额叶区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信