Road Detection with EOSResUNet and Post Vectorizing Algorithm

Oleksandr Filin, Anton Zapara, Serhii Panchenko
{"title":"Road Detection with EOSResUNet and Post Vectorizing Algorithm","authors":"Oleksandr Filin, Anton Zapara, Serhii Panchenko","doi":"10.1109/CVPRW.2018.00036","DOIUrl":null,"url":null,"abstract":"Object recognition on the satellite images is one of the most relevant and popular topics in the problem of pattern recognition. This was facilitated by many factors, such as a high number of satellites with high-resolution imagery, the significant development of computer vision, especially with a major breakthrough in the field of convolutional neural networks, a wide range of industry verticals for usage and still a quite empty market. Roads are one of the most popular objects for recognition. In this article, we want to present you the combination of work of neural network and postprocessing algorithm, due to which we get not only the coverage mask but also the vectors of all of the individual roads that are present in the image and can be used to address the higher-level tasks in the future. This approach was used to solve the DeepGlobe Road Extraction Challenge.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Object recognition on the satellite images is one of the most relevant and popular topics in the problem of pattern recognition. This was facilitated by many factors, such as a high number of satellites with high-resolution imagery, the significant development of computer vision, especially with a major breakthrough in the field of convolutional neural networks, a wide range of industry verticals for usage and still a quite empty market. Roads are one of the most popular objects for recognition. In this article, we want to present you the combination of work of neural network and postprocessing algorithm, due to which we get not only the coverage mask but also the vectors of all of the individual roads that are present in the image and can be used to address the higher-level tasks in the future. This approach was used to solve the DeepGlobe Road Extraction Challenge.
基于EOSResUNet和后矢量化算法的道路检测
卫星图像上的目标识别是模式识别中最相关、最热门的课题之一。这是由许多因素促成的,例如具有高分辨率图像的大量卫星,计算机视觉的重大发展,特别是卷积神经网络领域的重大突破,广泛的行业垂直应用以及仍然相当空白的市场。道路是最受欢迎的识别对象之一。在这篇文章中,我们想向你展示神经网络和后处理算法的结合,因为我们不仅得到了覆盖掩码,而且得到了图像中存在的所有单个道路的向量,可以用来解决未来的更高级别的任务。该方法被用于解决DeepGlobe道路提取挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信