A New Distributional Ranking Loss With Uncertainty: Illustrated in Relative Depth Estimation

Alican Mertan, Y. Sahin, D. Duff, Gözde B. Ünal
{"title":"A New Distributional Ranking Loss With Uncertainty: Illustrated in Relative Depth Estimation","authors":"Alican Mertan, Y. Sahin, D. Duff, Gözde B. Ünal","doi":"10.1109/3DV50981.2020.00118","DOIUrl":null,"url":null,"abstract":"We propose a new approach for the problem of relative depth estimation from a single image. Instead of directly regressing over depth scores, we formulate the problem as estimation of a probability distribution over depth and aim to learn the parameters of the distributions which maximize the likelihood of the given data. To train our model, we propose a new ranking loss, Distributional Loss, which tries to increase the probability of farther pixel’s depth being greater than the closer pixel’s depth. Our proposed approach allows our model to output confidence in its estimation in the form of standard deviation of the distribution. We achieve state of the art results against a number of baselines while providing confidence in our estimations. Our analysis show that estimated confidence is actually a good indicator of accuracy. We investigate the usage of confidence information in a downstream task of metric depth estimation, to increase its performance.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We propose a new approach for the problem of relative depth estimation from a single image. Instead of directly regressing over depth scores, we formulate the problem as estimation of a probability distribution over depth and aim to learn the parameters of the distributions which maximize the likelihood of the given data. To train our model, we propose a new ranking loss, Distributional Loss, which tries to increase the probability of farther pixel’s depth being greater than the closer pixel’s depth. Our proposed approach allows our model to output confidence in its estimation in the form of standard deviation of the distribution. We achieve state of the art results against a number of baselines while providing confidence in our estimations. Our analysis show that estimated confidence is actually a good indicator of accuracy. We investigate the usage of confidence information in a downstream task of metric depth estimation, to increase its performance.
一种新的不确定分布排序损失:以相对深度估计为例
针对单幅图像的相对深度估计问题,提出了一种新的估计方法。我们不是直接回归深度分数,而是将问题表述为对深度概率分布的估计,目的是学习使给定数据的可能性最大化的分布参数。为了训练我们的模型,我们提出了一种新的排序损失,分布式损失,它试图增加远像素深度大于近像素深度的概率。我们提出的方法允许我们的模型以分布的标准差的形式输出其估计的置信度。我们在对我们的估计提供信心的同时,根据许多基线实现了最先进的结果。我们的分析表明,估计的置信度实际上是准确性的一个很好的指标。我们研究了置信信息在度量深度估计的下游任务中的使用,以提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信