Vidya: Performing Code-Block I/O Characterization for Data Access Optimization

H. Devarajan, Anthony Kougkas, Prajwal Challa, Xian-He Sun
{"title":"Vidya: Performing Code-Block I/O Characterization for Data Access Optimization","authors":"H. Devarajan, Anthony Kougkas, Prajwal Challa, Xian-He Sun","doi":"10.1109/HiPC.2018.00036","DOIUrl":null,"url":null,"abstract":"Understanding, characterizing and tuning scientific applications' I/O behavior is an increasingly complicated process in HPC systems. Existing tools use either offline profiling or online analysis to get insights into the applications' I/O patterns. However, there is lack of a clear formula to characterize applications' I/O. Moreover, these tools are application specific and do not account for multi-tenant systems. This paper presents Vidya, an I/O profiling framework which can predict application's I/O intensity using a new formula called Code-Block I/O Characterization (CIOC). Using CIOC, developers and system architects can tune an application's I/O behavior and better match the underlying storage system to maximize performance. Evaluation results show that Vidya can predict an application's I/O intensity with a variance of 0.05%. Vidya can profile applications with a high accuracy of 98% while reducing profiling time by 9x. We further show how Vidya can optimize an application's I/O time by 3.7x.","PeriodicalId":113335,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2018.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Understanding, characterizing and tuning scientific applications' I/O behavior is an increasingly complicated process in HPC systems. Existing tools use either offline profiling or online analysis to get insights into the applications' I/O patterns. However, there is lack of a clear formula to characterize applications' I/O. Moreover, these tools are application specific and do not account for multi-tenant systems. This paper presents Vidya, an I/O profiling framework which can predict application's I/O intensity using a new formula called Code-Block I/O Characterization (CIOC). Using CIOC, developers and system architects can tune an application's I/O behavior and better match the underlying storage system to maximize performance. Evaluation results show that Vidya can predict an application's I/O intensity with a variance of 0.05%. Vidya can profile applications with a high accuracy of 98% while reducing profiling time by 9x. We further show how Vidya can optimize an application's I/O time by 3.7x.
为数据访问优化执行代码块I/O表征
在高性能计算系统中,理解、描述和调优科学应用程序的I/O行为是一个越来越复杂的过程。现有工具使用离线分析或在线分析来深入了解应用程序的I/O模式。然而,缺乏一个明确的公式来描述应用程序的I/O。此外,这些工具是特定于应用程序的,不考虑多租户系统。本文介绍了Vidya,一个I/O分析框架,它可以使用一个称为代码块I/O表征(CIOC)的新公式来预测应用程序的I/O强度。使用CIOC,开发人员和系统架构师可以调优应用程序的I/O行为,并更好地匹配底层存储系统,从而最大化性能。评估结果表明,Vidya可以预测应用程序的I/O强度,方差为0.05%。Vidya可以以98%的高精度分析应用程序,同时将分析时间缩短9倍。我们进一步展示了Vidya如何将应用程序的I/O时间优化3.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信