Generative Meta-Learning Robust Quality-Diversity Portfolio

K. Yuksel
{"title":"Generative Meta-Learning Robust Quality-Diversity Portfolio","authors":"K. Yuksel","doi":"10.1145/3583133.3590729","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel meta-learning approach to optimize a robust portfolio ensemble. The method uses a deep generative model to generate diverse and high-quality sub-portfolios combined to form the ensemble portfolio. The generative model consists of a convolutional layer, a stateful LSTM module, and a dense network. During training, the model takes a randomly sampled batch of Gaussian noise and outputs a population of solutions, which are then evaluated using the objective function of the problem. The weights of the model are updated using a gradient-based optimizer. The convolutional layer transforms the noise into a desired distribution in latent space, while the LSTM module adds dependence between generations. The dense network decodes the population of solutions. The proposed method balances maximizing the performance of the sub-portfolios with minimizing their maximum correlation, resulting in a robust ensemble portfolio against systematic shocks. The approach was effective in experiments where stochastic rewards were present. Moreover, the results (Fig. 1) demonstrated that the ensemble portfolio obtained by taking the average of the generated sub-portfolio weights was robust and generalized well. The proposed method can be applied to problems where diversity is desired among co-optimized solutions for a robust ensemble. The source-codes and the dataset are in the supplementary material.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel meta-learning approach to optimize a robust portfolio ensemble. The method uses a deep generative model to generate diverse and high-quality sub-portfolios combined to form the ensemble portfolio. The generative model consists of a convolutional layer, a stateful LSTM module, and a dense network. During training, the model takes a randomly sampled batch of Gaussian noise and outputs a population of solutions, which are then evaluated using the objective function of the problem. The weights of the model are updated using a gradient-based optimizer. The convolutional layer transforms the noise into a desired distribution in latent space, while the LSTM module adds dependence between generations. The dense network decodes the population of solutions. The proposed method balances maximizing the performance of the sub-portfolios with minimizing their maximum correlation, resulting in a robust ensemble portfolio against systematic shocks. The approach was effective in experiments where stochastic rewards were present. Moreover, the results (Fig. 1) demonstrated that the ensemble portfolio obtained by taking the average of the generated sub-portfolio weights was robust and generalized well. The proposed method can be applied to problems where diversity is desired among co-optimized solutions for a robust ensemble. The source-codes and the dataset are in the supplementary material.
生成式元学习稳健质量-多样性组合
本文提出了一种新的元学习方法来优化鲁棒组合集成。该方法采用深度生成模型,生成多样化、高质量的子投资组合,组合形成整体投资组合。生成模型由卷积层、有状态LSTM模块和密集网络组成。在训练过程中,该模型随机抽取一批高斯噪声并输出解的总体,然后使用问题的目标函数对其进行评估。使用基于梯度的优化器更新模型的权重。卷积层将噪声转换为潜在空间中的期望分布,而LSTM模块增加了代之间的依赖性。密集的网络解码了解的种群。该方法在子组合性能最大化与子组合最大相关性最小化之间取得平衡,从而获得抗系统冲击的鲁棒组合。这种方法在有随机奖励的实验中是有效的。此外,结果(图1)表明,通过对生成的子组合权重取平均值得到的集合组合具有较好的鲁棒性和泛化性。所提出的方法可以应用于鲁棒集成的协同优化解之间需要多样性的问题。源代码和数据集在补充资料中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信