Estimation of Human Base Kinematics using Dynamical Inverse Kinematics and Contact-Aided Lie Group Kalman Filter

Prashanth Ramadoss, Lorenzo Rapetti, Yeshasvi Tirupachuri, Riccardo Grieco, Gianluca Milani, Enrico Valli, Stefano Dafarra, Silvio Traversaro, D. Pucci
{"title":"Estimation of Human Base Kinematics using Dynamical Inverse Kinematics and Contact-Aided Lie Group Kalman Filter","authors":"Prashanth Ramadoss, Lorenzo Rapetti, Yeshasvi Tirupachuri, Riccardo Grieco, Gianluca Milani, Enrico Valli, Stefano Dafarra, Silvio Traversaro, D. Pucci","doi":"10.1109/Humanoids53995.2022.10000199","DOIUrl":null,"url":null,"abstract":"Full body motion estimation of a human through wearable sensing technologies is challenging in the absence of position sensors since base kinematics is usually not directly measurable. This paper contributes to the development of a model-based floating base kinematics estimation algorithm using wearable distributed inertial and force-torque sensing. This is done by extending the existing dynamical optimization-based Inverse Kinematics (IK) approach for joint state estimation, in cascade, to include a center of pressure based contact detector and a contact-aided Kalman filter on Lie groups for floating base pose estimation. The proposed method is tested in an experimental scenario where a human equipped with a sensorized suit and shoes performs walking motions. The proposed method is demonstrated to obtain a reliable reconstruction of the whole-body human motion.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Full body motion estimation of a human through wearable sensing technologies is challenging in the absence of position sensors since base kinematics is usually not directly measurable. This paper contributes to the development of a model-based floating base kinematics estimation algorithm using wearable distributed inertial and force-torque sensing. This is done by extending the existing dynamical optimization-based Inverse Kinematics (IK) approach for joint state estimation, in cascade, to include a center of pressure based contact detector and a contact-aided Kalman filter on Lie groups for floating base pose estimation. The proposed method is tested in an experimental scenario where a human equipped with a sensorized suit and shoes performs walking motions. The proposed method is demonstrated to obtain a reliable reconstruction of the whole-body human motion.
基于动态逆运动学和接触辅助李群卡尔曼滤波的人体基础运动学估计
在没有位置传感器的情况下,通过可穿戴传感技术估计人体全身运动是具有挑战性的,因为基本运动学通常不能直接测量。本文提出了一种基于模型的浮动基座运动学估计算法,该算法采用可穿戴式分布式惯性和力-扭矩传感技术。这是通过扩展现有的基于动态优化的逆运动学(IK)方法来实现的,用于关节状态估计,在级联中,包括基于压力中心的接触检测器和用于浮动基姿估计的李群上的接触辅助卡尔曼滤波器。所提出的方法在一个实验场景中进行了测试,在这个实验场景中,一个人穿着传感器化的衣服和鞋子进行行走运动。该方法可获得可靠的人体全身运动重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信