Modelling and Detecting Decisions in Multi-party Dialogue

R. Fernández, Matthew Frampton, Patrick Ehlen, Matthew Purver, S. Peters
{"title":"Modelling and Detecting Decisions in Multi-party Dialogue","authors":"R. Fernández, Matthew Frampton, Patrick Ehlen, Matthew Purver, S. Peters","doi":"10.3115/1622064.1622095","DOIUrl":null,"url":null,"abstract":"We describe a process for automatically detecting decision-making sub-dialogues in transcripts of multi-party, human-human meetings. Extending our previous work on action item identification, we propose a structured approach that takes into account the different roles utterances play in the decision-making process. We show that this structured approach outperforms the accuracy achieved by existing decision detection systems based on flat annotations, while enabling the extraction of more fine-grained information that can be used for summarization and reporting.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"377 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1622064.1622095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

We describe a process for automatically detecting decision-making sub-dialogues in transcripts of multi-party, human-human meetings. Extending our previous work on action item identification, we propose a structured approach that takes into account the different roles utterances play in the decision-making process. We show that this structured approach outperforms the accuracy achieved by existing decision detection systems based on flat annotations, while enabling the extraction of more fine-grained information that can be used for summarization and reporting.
多方对话中的决策建模和检测
我们描述了一个自动检测多方人机会议文本中的决策子对话的过程。扩展我们之前在行动项目识别方面的工作,我们提出了一种结构化的方法,该方法考虑了话语在决策过程中发挥的不同作用。我们表明,这种结构化方法优于现有基于平面注释的决策检测系统所达到的准确性,同时能够提取更细粒度的信息,这些信息可用于摘要和报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信