Energy-Efficient Dynamic Task Offloading for Energy Harvesting Mobile Cloud Computing

Yongqiang Zhang, Jianbo He, Songtao Guo
{"title":"Energy-Efficient Dynamic Task Offloading for Energy Harvesting Mobile Cloud Computing","authors":"Yongqiang Zhang, Jianbo He, Songtao Guo","doi":"10.1109/NAS.2018.8515736","DOIUrl":null,"url":null,"abstract":"Mobile-edge cloud computing (MEC) as an emerging and prospective computing paradigm, can significantly enhance computation capability and prolong the lifetime of mobile devices (MDs) by offloading computation-intensive tasks to the cloud. This paper considers applying simultaneous wireless information and power transfer (SWIPT) technique to a multi-user computation offloading problem for mobile-edge cloud computing, where energy-limited mobile devices (MDs) harvest energy form the ambient radio-frequency (RF) signal. We investigate partial computation offloading by jointly optimizing MDs' clock frequency, transmit power and offloading ratio with the system design objective of minimizing energy cost of mobile devices. To this end, we first formulate an energy cost minimization problem constrained by task completion time and finite mobile- edge cloud computation capacity. Then, by exploiting alternative optimization (AO) based on difference of convex function (DC) programming and linear programming, we design an iterative algorithm for clock frequency control, transmission power allocation, offloading ratio and power splitting ratio to solve the non-convex optimization problem. Our simulation results reveal that the proposed algorithm can converge within a few iterations and yield minimum system energy cost.","PeriodicalId":115970,"journal":{"name":"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAS.2018.8515736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Mobile-edge cloud computing (MEC) as an emerging and prospective computing paradigm, can significantly enhance computation capability and prolong the lifetime of mobile devices (MDs) by offloading computation-intensive tasks to the cloud. This paper considers applying simultaneous wireless information and power transfer (SWIPT) technique to a multi-user computation offloading problem for mobile-edge cloud computing, where energy-limited mobile devices (MDs) harvest energy form the ambient radio-frequency (RF) signal. We investigate partial computation offloading by jointly optimizing MDs' clock frequency, transmit power and offloading ratio with the system design objective of minimizing energy cost of mobile devices. To this end, we first formulate an energy cost minimization problem constrained by task completion time and finite mobile- edge cloud computation capacity. Then, by exploiting alternative optimization (AO) based on difference of convex function (DC) programming and linear programming, we design an iterative algorithm for clock frequency control, transmission power allocation, offloading ratio and power splitting ratio to solve the non-convex optimization problem. Our simulation results reveal that the proposed algorithm can converge within a few iterations and yield minimum system energy cost.
能量收集移动云计算的节能动态任务卸载
移动边缘云计算(MEC)作为一种新兴的、有发展前景的计算范式,通过将计算密集型任务卸载到云端,可以显著增强计算能力并延长移动设备(MDs)的使用寿命。本文考虑将同步无线信息和功率传输(SWIPT)技术应用于移动边缘云计算的多用户计算卸载问题,其中能量有限的移动设备(MDs)从环境射频(RF)信号中获取能量。以移动设备能量成本最小为系统设计目标,通过共同优化MDs时钟频率、发射功率和卸载比,研究了部分计算卸载。为此,我们首先提出了一个受任务完成时间和有限移动边缘云计算能力约束的能量成本最小化问题。然后,利用基于凸函数差分规划和线性规划的备选优化(AO),设计了时钟频率控制、传输功率分配、卸载比和功率分割比的迭代算法来解决非凸优化问题。仿真结果表明,该算法可以在几次迭代内收敛,并产生最小的系统能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信