A fuzzy classification using a Type-2 fuzzy model in social networks

M. Naderipour, S. Bastani, M. F. Zarandi, I. Türksen
{"title":"A fuzzy classification using a Type-2 fuzzy model in social networks","authors":"M. Naderipour, S. Bastani, M. F. Zarandi, I. Türksen","doi":"10.1109/NAFIPS.2016.7851632","DOIUrl":null,"url":null,"abstract":"In this paper, we study a type-2 fuzzy classification method. Granular computing can help us to model the relationships between human-based system and social sciences in this field. The links in a social network often reflect social relationships among users. In this work, we investigate a classification identifying the relationships among social network users based on certain social network property, granular computing approach and Type 2 fuzzy logic. We evaluate our approach on large scale real-world data from Renren network, showing that the accuracy of the prediction of our classification algorithm is higher than the type 1 fuzzy analysis and the crisp approach.","PeriodicalId":208265,"journal":{"name":"2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2016.7851632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a type-2 fuzzy classification method. Granular computing can help us to model the relationships between human-based system and social sciences in this field. The links in a social network often reflect social relationships among users. In this work, we investigate a classification identifying the relationships among social network users based on certain social network property, granular computing approach and Type 2 fuzzy logic. We evaluate our approach on large scale real-world data from Renren network, showing that the accuracy of the prediction of our classification algorithm is higher than the type 1 fuzzy analysis and the crisp approach.
社交网络中二类模糊模型的模糊分类
本文研究了一种二类模糊分类方法。颗粒计算可以帮助我们在这一领域建立以人为本的系统与社会科学之间的关系模型。社交网络中的链接通常反映了用户之间的社会关系。在这项工作中,我们研究了一种基于特定社交网络属性、颗粒计算方法和2型模糊逻辑的社交网络用户之间关系识别分类。我们在人人网的大规模真实数据上对我们的方法进行了评估,结果表明我们的分类算法的预测精度高于1型模糊分析和crisp方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信