{"title":"Be My Guess: Guessing Entropy vs. Success Rate for Evaluating Side-Channel Attacks of Secure Chips","authors":"Julien Béguinot, Wei Cheng, S. Guilley, O. Rioul","doi":"10.1109/DSD57027.2022.00072","DOIUrl":null,"url":null,"abstract":"In a theoretical context of side-channel attacks, optimal bounds between success rate and guessing entropy are derived with a simple majorization (Schur-concavity) argument. They are further theoretically refined for different versions of the classical Hamming weight leakage model, in particular assuming a priori equiprobable secret keys and additive white Gaussian measurement noise. Closed-form expressions and numerical computation are given. A study of the impact of the choice of the substitution box with respect to side-channel resistance reveals that its nonlinearity tends to homogenize the expressivity of success rate and guessing entropy. The intriguing approximate relation $GE=1/SR$ is observed in the case of 8-bit bytes and low noise.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In a theoretical context of side-channel attacks, optimal bounds between success rate and guessing entropy are derived with a simple majorization (Schur-concavity) argument. They are further theoretically refined for different versions of the classical Hamming weight leakage model, in particular assuming a priori equiprobable secret keys and additive white Gaussian measurement noise. Closed-form expressions and numerical computation are given. A study of the impact of the choice of the substitution box with respect to side-channel resistance reveals that its nonlinearity tends to homogenize the expressivity of success rate and guessing entropy. The intriguing approximate relation $GE=1/SR$ is observed in the case of 8-bit bytes and low noise.