Improving Supervised Microaneurysm Segmentation using Autoencoder-Regularized Neural Network

Rangwan Kasantikul, Worapan Kusakunniran
{"title":"Improving Supervised Microaneurysm Segmentation using Autoencoder-Regularized Neural Network","authors":"Rangwan Kasantikul, Worapan Kusakunniran","doi":"10.1109/DICTA.2018.8615839","DOIUrl":null,"url":null,"abstract":"This paper proposes the novel microaneurysm segmentation technique, based on the autoencoder-regularized neural network model. The proposed method is developed using two levels of the segmentation. First, the coarse-level segmentation stage locates the candidate areas using the multi-scale correlation filter and region growing. Second, the fine-level segmentation stage uses the neural network to obtain confidence values of candidate areas of being microaneurysm. The neural network based technique introduced in this paper is the modified multilayer neural network with an additional branch to take into account of the reconstruction error (in a similar fashion to the autoencoder). This modification to the neural network results in the consistent improvement in the classification performance, when compared to the conventional network without such modification. The proposed method is evaluated using the retinopathic online challenge dataset. It can deliver very promising results, when compared with the existing state-of-the-art techniques.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes the novel microaneurysm segmentation technique, based on the autoencoder-regularized neural network model. The proposed method is developed using two levels of the segmentation. First, the coarse-level segmentation stage locates the candidate areas using the multi-scale correlation filter and region growing. Second, the fine-level segmentation stage uses the neural network to obtain confidence values of candidate areas of being microaneurysm. The neural network based technique introduced in this paper is the modified multilayer neural network with an additional branch to take into account of the reconstruction error (in a similar fashion to the autoencoder). This modification to the neural network results in the consistent improvement in the classification performance, when compared to the conventional network without such modification. The proposed method is evaluated using the retinopathic online challenge dataset. It can deliver very promising results, when compared with the existing state-of-the-art techniques.
应用自编码器-正则化神经网络改进监督微动脉瘤分割
本文提出了一种基于自编码器-正则化神经网络模型的新型微动脉瘤分割技术。该方法采用了两个层次的分割方法。首先,粗级分割阶段利用多尺度相关滤波和区域生长来定位候选区域;其次,精细分割阶段使用神经网络获得候选微动脉瘤区域的置信度值。本文介绍的基于神经网络的技术是一种改进的多层神经网络,增加了一个分支来考虑重构误差(类似于自编码器的方式)。这种对神经网络的修改与没有进行这种修改的传统网络相比,在分类性能上得到了一致的提高。使用视网膜病变在线挑战数据集对所提出的方法进行了评估。与现有的最先进的技术相比,它可以提供非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信