Integration of Calibration and Forcing Methods for Predicting Timely Crop States by Using AquaCrop-OS Model

Tianxiang Zhang, Jinya Su, Cunjia Liu, Wen‐Hua Chen
{"title":"Integration of Calibration and Forcing Methods for Predicting Timely Crop States by Using AquaCrop-OS Model","authors":"Tianxiang Zhang, Jinya Su, Cunjia Liu, Wen‐Hua Chen","doi":"10.31256/ukras19.29","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for predicting canopy states in real time by adopting a recent MATLAB based crop model: AquaCrop-OS. The historical observations are firstly used to estimate the crop sensitive parameters in Bayesian approach. Secondly, the model states will be replaced by updating remotely sensed observations in a sequential way. The final predicted states will be in comparison with the groundtruth and the RMSE of these two are 39.4155 g/ 𝒎𝟐 (calibration method) and 19.3679 g/𝒎𝟐(calibration with forcing method) concluding that the system is capable of predicting the crop status timely and improve the performance of calibration strategy.","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/ukras19.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a framework for predicting canopy states in real time by adopting a recent MATLAB based crop model: AquaCrop-OS. The historical observations are firstly used to estimate the crop sensitive parameters in Bayesian approach. Secondly, the model states will be replaced by updating remotely sensed observations in a sequential way. The final predicted states will be in comparison with the groundtruth and the RMSE of these two are 39.4155 g/ 𝒎𝟐 (calibration method) and 19.3679 g/𝒎𝟐(calibration with forcing method) concluding that the system is capable of predicting the crop status timely and improve the performance of calibration strategy.
基于AquaCrop-OS模型的作物状态实时预测的校准与强迫方法集成
本文采用最新的基于MATLAB的作物模型AquaCrop-OS,提出了一个实时预测冠层状态的框架。首先利用历史观测值对作物敏感参数进行贝叶斯估计。其次,将模型状态替换为逐次更新遥感观测数据。将最终的预测状态与实测结果进行对比,两者的均方根误差分别为39.4155 g/𝒎(校准法)和19.3679 g/𝒎(强迫法),表明该系统能够及时预测作物状态,提高了校准策略的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信