Adaline and Recursive Least Square Error Based Techniques for Submodule Voltage Monitoring for the Cascaded High Frequency AC Link System

N. Elsayad, O. Mohammed
{"title":"Adaline and Recursive Least Square Error Based Techniques for Submodule Voltage Monitoring for the Cascaded High Frequency AC Link System","authors":"N. Elsayad, O. Mohammed","doi":"10.1109/GREENTECH.2017.61","DOIUrl":null,"url":null,"abstract":"This paper presents two techniques to monitor the voltage of the submodules of the cascaded high-frequency AC link (CHFAL) system. The first proposed technique is using the adaptive linear neuron (ADALINE) algorithm, and the second proposed technique is using the recursive least square error (RLSE) technique. Both of the two submodule voltage monitoring techniques need only one voltage sensor per phase to measure the output phase voltage. The proposed techniques eliminate the need for submodule voltage monitoring sensors and the associated communication links with the central controller, which makes the proposed techniques appealing to CHFACL systems with large number of submodules. The results are validated through Matlab/Simulink simulation software.","PeriodicalId":104496,"journal":{"name":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2017.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents two techniques to monitor the voltage of the submodules of the cascaded high-frequency AC link (CHFAL) system. The first proposed technique is using the adaptive linear neuron (ADALINE) algorithm, and the second proposed technique is using the recursive least square error (RLSE) technique. Both of the two submodule voltage monitoring techniques need only one voltage sensor per phase to measure the output phase voltage. The proposed techniques eliminate the need for submodule voltage monitoring sensors and the associated communication links with the central controller, which makes the proposed techniques appealing to CHFACL systems with large number of submodules. The results are validated through Matlab/Simulink simulation software.
基于Adaline和递归最小二乘误差的级联高频交流链路系统子模块电压监测技术
本文介绍了两种用于级联高频交流链路(CHFAL)系统各子模块电压监测的技术。第一种方法是使用自适应线性神经元(ADALINE)算法,第二种方法是使用递归最小二乘误差(RLSE)技术。这两种子模块电压监测技术每相只需要一个电压传感器来测量输出相电压。所提出的技术消除了对子模块电压监测传感器和与中央控制器相关的通信链路的需要,这使得所提出的技术对具有大量子模块的CHFACL系统具有吸引力。通过Matlab/Simulink仿真软件对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信