Neurological Disorders Detection Based on Computer Brain Interface Using Centralized Blockchain with Intrusion System

I. Yuwono, Eviani Damastuti Utomo
{"title":"Neurological Disorders Detection Based on Computer Brain Interface Using Centralized Blockchain with Intrusion System","authors":"I. Yuwono, Eviani Damastuti Utomo","doi":"10.17762/ijcnis.v14i2.5498","DOIUrl":null,"url":null,"abstract":"A brain-computer interface (BCI) would afford real-time communication, pointedly refining the standard of lifespan, brain-to-internet (B2I) connection, and interaction between the external digital devices and the brain. This assistive technology invents information and transmission advancement patterns, like directly linking the brain and multimedia gadgets to the cyber world. This system will convert brain data to signals which is understandable by multimedia gadgets without physical intervention and exchanges human-related languages with external atmosphere control protocols. These progressive difficulties would limit security severely. Hence, the rate of ransomware, attacks, malware, and other types of vulnerabilities will be rising radically. On the other hand, the necessity to enhance conventional processes for investigating cyberenvironment security facets. This article presents a Neurological Disorders Detection based on Computer Brain Interface Using Centralized Blockchain with Intrusion System (NDDCBI-CBIS). The projected NDDCBI-CBIS technique focuses on the identification of neurological disorders and epileptic seizure detection. To attain this, the presented NDDCBI-CBIS technique pre-processes the biomedical signals. Next, to detect epileptic seizures, long short-term memory (LSTM) model is applied. The experimental evaluation of the NDDCBI-CBIS approach can be tested by making use of the medical dataset and the outcomes inferred from the enhanced outcomes of the NDDCBI-CBIS technique.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/ijcnis.v14i2.5498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A brain-computer interface (BCI) would afford real-time communication, pointedly refining the standard of lifespan, brain-to-internet (B2I) connection, and interaction between the external digital devices and the brain. This assistive technology invents information and transmission advancement patterns, like directly linking the brain and multimedia gadgets to the cyber world. This system will convert brain data to signals which is understandable by multimedia gadgets without physical intervention and exchanges human-related languages with external atmosphere control protocols. These progressive difficulties would limit security severely. Hence, the rate of ransomware, attacks, malware, and other types of vulnerabilities will be rising radically. On the other hand, the necessity to enhance conventional processes for investigating cyberenvironment security facets. This article presents a Neurological Disorders Detection based on Computer Brain Interface Using Centralized Blockchain with Intrusion System (NDDCBI-CBIS). The projected NDDCBI-CBIS technique focuses on the identification of neurological disorders and epileptic seizure detection. To attain this, the presented NDDCBI-CBIS technique pre-processes the biomedical signals. Next, to detect epileptic seizures, long short-term memory (LSTM) model is applied. The experimental evaluation of the NDDCBI-CBIS approach can be tested by making use of the medical dataset and the outcomes inferred from the enhanced outcomes of the NDDCBI-CBIS technique.
基于集中式区块链入侵系统的计算机脑接口神经系统疾病检测
脑机接口(BCI)将提供实时通信,有针对性地完善寿命标准,大脑到互联网(B2I)连接,以及外部数字设备与大脑之间的交互。这种辅助技术发明了信息和传输的先进模式,比如将大脑和多媒体设备直接连接到网络世界。该系统将大脑数据转换为多媒体设备可以理解的信号,无需物理干预,并与外部大气控制协议交换人类相关语言。这些逐渐出现的困难将严重限制安全。因此,勒索软件、攻击、恶意软件和其他类型漏洞的发生率将急剧上升。另一方面,有必要加强调查网络环境安全方面的传统流程。本文提出了一种基于集中式区块链入侵系统(NDDCBI-CBIS)的计算机脑接口神经系统疾病检测方法。预计的nddcbbi - cbis技术侧重于神经系统疾病的识别和癫痫发作的检测。为此,提出了NDDCBI-CBIS技术对生物医学信号进行预处理。其次,应用长短期记忆(LSTM)模型检测癫痫发作。利用医学数据集和NDDCBI-CBIS技术增强结果推断的结果,可以对NDDCBI-CBIS方法的实验评估进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信