A self-adaptive heterogeneous pso for real-parameter optimization

Filipe V. Nepomuceno, A. Engelbrecht
{"title":"A self-adaptive heterogeneous pso for real-parameter optimization","authors":"Filipe V. Nepomuceno, A. Engelbrecht","doi":"10.1109/CEC.2013.6557592","DOIUrl":null,"url":null,"abstract":"Heterogeneous particle swarm optimizers (HPSO) allow particles to use different update equations, referred to as behaviors, within the swarm. Dynamic HPSOs allow the particles to change their behaviors during the search. These HPSOs alter the exploration/exploitation balance during the search which alters the search behavior of the swarm. This paper introduces a new self-adaptive HPSO and compares it with other HPSO algorithms on the CEC 2013 real-parameter optimization benchmark functions. The proposed algorithm keeps track of how successful each behavior has been over a number of iterations and uses that information to select the next behavior of a particle. The results show that the proposed algorithm outperforms existing HPSO algorithms on the benchmark functions.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

Heterogeneous particle swarm optimizers (HPSO) allow particles to use different update equations, referred to as behaviors, within the swarm. Dynamic HPSOs allow the particles to change their behaviors during the search. These HPSOs alter the exploration/exploitation balance during the search which alters the search behavior of the swarm. This paper introduces a new self-adaptive HPSO and compares it with other HPSO algorithms on the CEC 2013 real-parameter optimization benchmark functions. The proposed algorithm keeps track of how successful each behavior has been over a number of iterations and uses that information to select the next behavior of a particle. The results show that the proposed algorithm outperforms existing HPSO algorithms on the benchmark functions.
面向实参数优化的自适应异构粒子群算法
异构粒子群优化器(HPSO)允许粒子在群内使用不同的更新方程,称为行为。动态hpso允许粒子在搜索过程中改变它们的行为。这些hpso改变了搜索过程中的探索/利用平衡,从而改变了群体的搜索行为。本文介绍了一种新的自适应HPSO算法,并在CEC 2013实参数优化基准函数上与其他HPSO算法进行了比较。所提出的算法跟踪在多次迭代中每个行为的成功程度,并使用该信息来选择粒子的下一个行为。结果表明,该算法在基准函数上优于现有的HPSO算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信