A SIMD/dataflow architecture for a neurocomputer for spike-processing neural networks (NESPINN)

A. Jahnke, U. Roth, H. Klar
{"title":"A SIMD/dataflow architecture for a neurocomputer for spike-processing neural networks (NESPINN)","authors":"A. Jahnke, U. Roth, H. Klar","doi":"10.1109/MNNFS.1996.493796","DOIUrl":null,"url":null,"abstract":"We present the architecture of a a neurocomputer for the simulation of spike-processing biological neural networks (NESPINN). It consists mainly of a neuron state memory, two connectivity units, a spike-event list, a sector unit and the NESPINN chip with a control unit, and eight PEs with 2 kB local on-chip memory each. In order to increase the performance features such as mixed SIMD/dataflow mode are included. The neurocomputer allows the simulation of up to 512 k neurons with a speed-up of ca. 600 over a Sparc-10. It thus allows tackling difficult low vision problems (e.g. scene segmentation) or simulation of the detailed spike behaviour of large cortical networks.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We present the architecture of a a neurocomputer for the simulation of spike-processing biological neural networks (NESPINN). It consists mainly of a neuron state memory, two connectivity units, a spike-event list, a sector unit and the NESPINN chip with a control unit, and eight PEs with 2 kB local on-chip memory each. In order to increase the performance features such as mixed SIMD/dataflow mode are included. The neurocomputer allows the simulation of up to 512 k neurons with a speed-up of ca. 600 over a Sparc-10. It thus allows tackling difficult low vision problems (e.g. scene segmentation) or simulation of the detailed spike behaviour of large cortical networks.
面向峰值处理神经网络(NESPINN)的神经计算机SIMD/数据流架构
我们提出了一种神经计算机的结构,用于模拟尖峰处理生物神经网络(NESPINN)。它主要由一个神经元状态存储器、两个连接单元、一个尖峰事件列表、一个扇区单元和带控制单元的NESPINN芯片以及8个pe组成,每个pe具有2 kB的本地片上存储器。为了提高性能,包括混合SIMD/数据流模式等功能。神经计算机可以模拟多达512万个神经元,比Sparc-10的速度提高约600。因此,它可以解决困难的低视力问题(例如场景分割)或模拟大型皮质网络的详细spike行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信