Writer identification using edge based features

Zhenyin Fan, Zhenhua Guo, Youbin Chen
{"title":"Writer identification using edge based features","authors":"Zhenyin Fan, Zhenhua Guo, Youbin Chen","doi":"10.1109/ACPR.2015.7486537","DOIUrl":null,"url":null,"abstract":"In this paper we present a new method for writer identification, which extract original Local Binary Pattern(LBP) of different radius and Edge descriptors from the edge points of the handwriting. Then, we make combinations of these edge based features. Experimental results demonstrate that the combination of edge points based features outperform traditional features extracted from the whole text, which can get state-of-the-art performance on CVL andICDAR2013 datasets.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present a new method for writer identification, which extract original Local Binary Pattern(LBP) of different radius and Edge descriptors from the edge points of the handwriting. Then, we make combinations of these edge based features. Experimental results demonstrate that the combination of edge points based features outperform traditional features extracted from the whole text, which can get state-of-the-art performance on CVL andICDAR2013 datasets.
使用基于边缘特征的写器识别
本文提出了一种新的笔迹识别方法,从笔迹的边缘点提取不同半径和边缘描述符的原始局部二值模式(LBP)。然后,我们对这些基于边缘的特征进行组合。实验结果表明,基于边缘点的特征组合优于从全文中提取的传统特征,可以在CVL和icdar2013数据集上获得最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信