Probabilistic latent query analysis for combining multiple retrieval sources

Rong Yan, Alexander Hauptmann
{"title":"Probabilistic latent query analysis for combining multiple retrieval sources","authors":"Rong Yan, Alexander Hauptmann","doi":"10.1145/1148170.1148228","DOIUrl":null,"url":null,"abstract":"Combining the output from multiple retrieval sources over the same document collection is of great importance to a number of retrieval tasks such as multimedia retrieval, web retrieval and meta-search. To merge retrieval sources adaptively according to query topics, we propose a series of new approaches called probabilistic latent query analysis (pLQA), which can associate non-identical combination weights with latent classes underlying the query space. Compared with previous query independent and query-class based combination methods, the proposed approaches have the advantage of being able to discover latent query classes automatically without using prior human knowledge, to assign one query to a mixture of query classes, and to determine the number of query classes under a model selection principle. Experimental results on two retrieval tasks, i.e., multimedia retrieval and meta-search, demonstrate that the proposed methods can uncover sensible latent classes from training data, and can achieve considerable performance gains.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Combining the output from multiple retrieval sources over the same document collection is of great importance to a number of retrieval tasks such as multimedia retrieval, web retrieval and meta-search. To merge retrieval sources adaptively according to query topics, we propose a series of new approaches called probabilistic latent query analysis (pLQA), which can associate non-identical combination weights with latent classes underlying the query space. Compared with previous query independent and query-class based combination methods, the proposed approaches have the advantage of being able to discover latent query classes automatically without using prior human knowledge, to assign one query to a mixture of query classes, and to determine the number of query classes under a model selection principle. Experimental results on two retrieval tasks, i.e., multimedia retrieval and meta-search, demonstrate that the proposed methods can uncover sensible latent classes from training data, and can achieve considerable performance gains.
组合多检索源的概率潜在查询分析
将来自多个检索源的输出组合在同一文档集合上对于许多检索任务(如多媒体检索、web检索和元搜索)非常重要。为了根据查询主题自适应地合并检索源,我们提出了一系列新的方法,称为概率潜在查询分析(pLQA),该方法可以将不相同的组合权值与查询空间底层的潜在类关联起来。与以往的独立查询和基于查询类的组合方法相比,本文提出的方法具有无需使用人类先验知识就能自动发现潜在查询类、将一个查询分配给混合查询类、在模型选择原则下确定查询类数量等优点。在多媒体检索和元搜索两个检索任务上的实验结果表明,本文提出的方法可以从训练数据中发现有意义的潜在类,并取得了可观的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信