{"title":"A class of nonlinear multi-objective mixed integer programming model for oil and gas portfolio and algorithm solution","authors":"Wei Yan","doi":"10.1177/01445987231182448","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the oil & gas assets portfolio. A multi-objective portfolio model of oil & gas assets is studied from two perspectives—scale and revenue. Considering the nonlinear and integer constraints in the model, a class of oil & gas assets portfolio model of nonlinear multi-objective mixed integer programming is established. The weight of the multi-objective is solved by the support vector machine model. A hybrid genetic algorithm, which uses the position displacement strategy of the particle swarm optimizer as a mutation operation, is applied to the optimization model. Finally, two examples are applied to verify the effectiveness of the model and algorithm.","PeriodicalId":444405,"journal":{"name":"Energy Exploration & Exploitation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987231182448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the oil & gas assets portfolio. A multi-objective portfolio model of oil & gas assets is studied from two perspectives—scale and revenue. Considering the nonlinear and integer constraints in the model, a class of oil & gas assets portfolio model of nonlinear multi-objective mixed integer programming is established. The weight of the multi-objective is solved by the support vector machine model. A hybrid genetic algorithm, which uses the position displacement strategy of the particle swarm optimizer as a mutation operation, is applied to the optimization model. Finally, two examples are applied to verify the effectiveness of the model and algorithm.