Triclustering on temporary microarray data using the TriGen algorithm

David Gutiérrez-Avilés, Cristina Rubio-Escudero, José Cristóbal Riquelme Santos
{"title":"Triclustering on temporary microarray data using the TriGen algorithm","authors":"David Gutiérrez-Avilés, Cristina Rubio-Escudero, José Cristóbal Riquelme Santos","doi":"10.1109/isda.2011.6121768","DOIUrl":null,"url":null,"abstract":"The analysis of microarray data is a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we propose the TriGen algorithm, which finds triclusters that take into account the experimental conditions and the time points, using evolutionary computation, in particular genetic algorithms, enabling the evaluation of the gene's behavior under subsets of conditions and of time points.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isda.2011.6121768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The analysis of microarray data is a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we propose the TriGen algorithm, which finds triclusters that take into account the experimental conditions and the time points, using evolutionary computation, in particular genetic algorithms, enabling the evaluation of the gene's behavior under subsets of conditions and of time points.
使用TriGen算法对临时微阵列数据进行三聚类
由于这些数据的特点,对微阵列数据的分析是一个计算挑战。聚类技术被广泛应用于创建在测试条件下表现出相似行为的基因组。双聚类作为经典聚类的改进而出现,因为它放宽了对分组的限制,允许基因仅在一个子集条件下进行评估,而不是在所有条件下进行评估。然而,这种技术不适合分析基因在几个时间点的特定条件下进行评估的时间微阵列数据。在本文中,我们提出了TriGen算法,该算法使用进化计算,特别是遗传算法,找到考虑实验条件和时间点的三聚类,从而能够评估条件和时间点子集下基因的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信