Adaptive Slepian-Wolf decoding using particle filtering based belief propagation

Samuel Cheng, Shuang Wang, Lijuan Cui
{"title":"Adaptive Slepian-Wolf decoding using particle filtering based belief propagation","authors":"Samuel Cheng, Shuang Wang, Lijuan Cui","doi":"10.1109/ALLERTON.2009.5394914","DOIUrl":null,"url":null,"abstract":"A major difficulty that plagues the practical use of Slepian-Wolf coding (and distributed source coding in general) is that the precise correlation among sources need to be known a priori. To resolve this problem, we propose an adaptive Slepian-Wolf decoder using particle filtering based belief propagation. We show through experiments that the proposed algorithm can simultaneously reconstruct a compressed source and estimate the joint correlation between the sources. Further, comparing to the conventional Slepian-Wolf coder based on standard belief propagation, the proposed approach can achieve higher compression under varying correlation statistics.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

A major difficulty that plagues the practical use of Slepian-Wolf coding (and distributed source coding in general) is that the precise correlation among sources need to be known a priori. To resolve this problem, we propose an adaptive Slepian-Wolf decoder using particle filtering based belief propagation. We show through experiments that the proposed algorithm can simultaneously reconstruct a compressed source and estimate the joint correlation between the sources. Further, comparing to the conventional Slepian-Wolf coder based on standard belief propagation, the proposed approach can achieve higher compression under varying correlation statistics.
基于粒子滤波的信念传播自适应睡眠狼解码
困扰睡狼编码(以及一般的分布式源代码编码)实际使用的一个主要困难是需要先验地知道源之间的精确相关性。为了解决这一问题,我们提出了一种基于粒子滤波的自适应Slepian-Wolf解码器。实验表明,该算法可以同时重建压缩源和估计压缩源之间的联合相关性。此外,与传统的基于标准信念传播的睡眠-狼编码器相比,该方法在不同的相关统计量下可以获得更高的压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信