Predicting Eye Color from Near Infrared Iris Images

Denton Bobeldyk, A. Ross
{"title":"Predicting Eye Color from Near Infrared Iris Images","authors":"Denton Bobeldyk, A. Ross","doi":"10.1109/ICB2018.2018.00026","DOIUrl":null,"url":null,"abstract":"Iris recognition systems typically acquire images of the iris in the near-infrared (NIR) spectrum rather than the visible spectrum. The use of NIR imaging facilitates the extraction of texture even from darker color irides (e.g., brown eyes). While NIR sensors reveal the textural details of the iris, the pigmentation and color details that are normally observed in the visible spectrum are subdued. In this work, we develop a method to predict the color of the iris from NIR images. In particular, we demonstrate that it is possible to distinguish between light-colored irides (blue, green, hazel) and dark-colored irides (brown) in the NIR spectrum by using the BSIF texture descriptor. Experiments on the BioCOP 2009 dataset containing over 43,000 iris images indicate that it is possible to distinguish between these two categories of eye color with an accuracy of 90%. This suggests that the structure and texture of the iris as manifested in 2D NIR iris images divulges information about the pigmentation and color of the iris.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Iris recognition systems typically acquire images of the iris in the near-infrared (NIR) spectrum rather than the visible spectrum. The use of NIR imaging facilitates the extraction of texture even from darker color irides (e.g., brown eyes). While NIR sensors reveal the textural details of the iris, the pigmentation and color details that are normally observed in the visible spectrum are subdued. In this work, we develop a method to predict the color of the iris from NIR images. In particular, we demonstrate that it is possible to distinguish between light-colored irides (blue, green, hazel) and dark-colored irides (brown) in the NIR spectrum by using the BSIF texture descriptor. Experiments on the BioCOP 2009 dataset containing over 43,000 iris images indicate that it is possible to distinguish between these two categories of eye color with an accuracy of 90%. This suggests that the structure and texture of the iris as manifested in 2D NIR iris images divulges information about the pigmentation and color of the iris.
从近红外虹膜图像预测眼睛颜色
虹膜识别系统通常在近红外(NIR)光谱中获取虹膜图像,而不是可见光光谱。使用近红外成像有助于提取纹理,甚至从较深颜色的虹膜(例如,棕色眼睛)。虽然近红外传感器揭示了虹膜的纹理细节,但通常在可见光谱中观察到的色素沉着和颜色细节是柔和的。在这项工作中,我们开发了一种从近红外图像中预测虹膜颜色的方法。特别是,我们证明了使用BSIF纹理描述符可以区分近红外光谱中的浅色虹膜(蓝色、绿色、淡褐色)和深色虹膜(棕色)。在包含43,000多张虹膜图像的BioCOP 2009数据集上进行的实验表明,区分这两类眼睛颜色的准确率为90%。这表明,在二维近红外虹膜图像中所表现的虹膜结构和纹理泄露了虹膜色素沉着和颜色的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信