Source Identification for Printed Documents

Min-Jen Tsai, Imam Yuadi, Yu-Han Tao, Jin-Sheng Yin
{"title":"Source Identification for Printed Documents","authors":"Min-Jen Tsai, Imam Yuadi, Yu-Han Tao, Jin-Sheng Yin","doi":"10.1109/CIC.2017.00019","DOIUrl":null,"url":null,"abstract":"Technological advances in digitization with a variety of image manipulation techniques enable the creation of printed documents illegally. Correspondingly, many researchers conduct studies in determining whether the document printed counterfeit or original. This study examines the several statistical feature sets from Gray Level Co-occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT), Spatial filters, Wiener filter, Gabor filter, Haralick and fractal filters to identify text and image document by using support vector machine (SVM) and decision fusion of feature selection. The average experimental results achieves that the image document is higher identification rate than text document. In summary, the proposed method outperforms the previous researches and it is a promising technique that can be implemented in real forensics for printed documents.","PeriodicalId":156843,"journal":{"name":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2017.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Technological advances in digitization with a variety of image manipulation techniques enable the creation of printed documents illegally. Correspondingly, many researchers conduct studies in determining whether the document printed counterfeit or original. This study examines the several statistical feature sets from Gray Level Co-occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT), Spatial filters, Wiener filter, Gabor filter, Haralick and fractal filters to identify text and image document by using support vector machine (SVM) and decision fusion of feature selection. The average experimental results achieves that the image document is higher identification rate than text document. In summary, the proposed method outperforms the previous researches and it is a promising technique that can be implemented in real forensics for printed documents.
打印文件的来源标识
数字化技术的进步和各种图像处理技术使非法创建印刷文件成为可能。相应地,许多研究人员进行研究,以确定打印的文件是伪造的还是原始的。本文采用支持向量机(SVM)和特征选择决策融合的方法,对灰度共生矩阵(GLCM)、离散小波变换(DWT)、空间滤波器、Wiener滤波器、Gabor滤波器、Haralick滤波器和分形滤波器等统计特征集进行识别。平均实验结果表明,图像文档的识别率高于文本文档。综上所述,该方法优于以往的研究,是一种有前途的技术,可以在实际的打印文件取证中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信