Barrett's Esophagus Identification Using Color Co-Occurrence Matrices

L. Souza, A. Ebigbo, A. Probst, H. Messmann, J. Papa, R. Mendel, C. Palm
{"title":"Barrett's Esophagus Identification Using Color Co-Occurrence Matrices","authors":"L. Souza, A. Ebigbo, A. Probst, H. Messmann, J. Papa, R. Mendel, C. Palm","doi":"10.1109/SIBGRAPI.2018.00028","DOIUrl":null,"url":null,"abstract":"In this work, we propose the use of single channel Color Co-occurrence Matrices for texture description of Barrett's Esophagus (BE) and adenocarcinoma images. Further classification using supervised learning techniques, such as Optimum-Path Forest (OPF), Support Vector Machines with Radial Basis Function (SVM-RBF) and Bayesian classifier supports the context of automatic BE and adenocarcinoma diagnosis. We validated three approaches of classification based on patches, patients and images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors and the machine learning techniques. Concerning MICCAI 2015 dataset, the best results were obtained using the blue channel for the descriptors and the supervised OPF for classification purposes in the patch-based approach, with sensitivity nearly to 73% for positive adenocarcinoma identification and specificity close to 77% for BE (non-cancerous) patch classification. Regarding the Augsburg dataset, the most accurate results were also obtained using both OPF classifier and blue channel descriptor for the feature extraction, with sensitivity close to 67% and specificity around to 76%. Our work highlights new advances in the related research area and provides a promising technique that combines color and texture information, allied to three different approaches of dataset pre-processing aiming to configure robust scenarios for the classification step.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this work, we propose the use of single channel Color Co-occurrence Matrices for texture description of Barrett's Esophagus (BE) and adenocarcinoma images. Further classification using supervised learning techniques, such as Optimum-Path Forest (OPF), Support Vector Machines with Radial Basis Function (SVM-RBF) and Bayesian classifier supports the context of automatic BE and adenocarcinoma diagnosis. We validated three approaches of classification based on patches, patients and images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors and the machine learning techniques. Concerning MICCAI 2015 dataset, the best results were obtained using the blue channel for the descriptors and the supervised OPF for classification purposes in the patch-based approach, with sensitivity nearly to 73% for positive adenocarcinoma identification and specificity close to 77% for BE (non-cancerous) patch classification. Regarding the Augsburg dataset, the most accurate results were also obtained using both OPF classifier and blue channel descriptor for the feature extraction, with sensitivity close to 67% and specificity around to 76%. Our work highlights new advances in the related research area and provides a promising technique that combines color and texture information, allied to three different approaches of dataset pre-processing aiming to configure robust scenarios for the classification step.
巴雷特食管颜色共现矩阵识别
在这项工作中,我们提出使用单通道颜色共生矩阵对巴雷特食管(BE)和腺癌图像进行纹理描述。进一步的分类使用监督学习技术,如最优路径森林(OPF)、径向基函数支持向量机(SVM-RBF)和贝叶斯分类器支持自动BE和腺癌诊断。我们在两个数据集(MICCAI 2015和Augsburg)中使用颜色和纹理描述符和机器学习技术验证了基于斑块、患者和图像的三种分类方法。对于MICCAI 2015数据集,在基于补丁的方法中,使用蓝色通道作为描述符和监督OPF用于分类目的获得了最好的结果,对于阳性腺癌识别的敏感性接近73%,对于BE(非癌)补丁分类的特异性接近77%。对于Augsburg数据集,使用OPF分类器和蓝色通道描述符进行特征提取也获得了最准确的结果,灵敏度接近67%,特异性约为76%。我们的工作突出了相关研究领域的新进展,并提供了一种有前途的技术,该技术结合了颜色和纹理信息,结合了三种不同的数据集预处理方法,旨在为分类步骤配置健壮的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信