Artificial neural network based voltage stability analysis in power system

C. Subramani, A. Jimoh, S. Kiran, S. Dash
{"title":"Artificial neural network based voltage stability analysis in power system","authors":"C. Subramani, A. Jimoh, S. Kiran, S. Dash","doi":"10.1109/ICCPCT.2016.7530255","DOIUrl":null,"url":null,"abstract":"Voltage stability analysis plays a vital role in determining the stability state of the power system. In this paper Global Voltage Stability Index is used in estimating with Artificial Neural Network for voltage stability assessment. A multi-layer error Cascade Feed-forward Back Propagation Neural Network and Radial Basis Function neural Network with back propagation learning algorithm is implemented with Global Voltage Stability Index. This methodology of testing with the proposed index indicates the authority in determining the voltage collapse point in the power system network and location for reactive power compensating device. The IEEE 14 bus system is tested and the simulation results are presented in this paper.","PeriodicalId":431894,"journal":{"name":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2016.7530255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Voltage stability analysis plays a vital role in determining the stability state of the power system. In this paper Global Voltage Stability Index is used in estimating with Artificial Neural Network for voltage stability assessment. A multi-layer error Cascade Feed-forward Back Propagation Neural Network and Radial Basis Function neural Network with back propagation learning algorithm is implemented with Global Voltage Stability Index. This methodology of testing with the proposed index indicates the authority in determining the voltage collapse point in the power system network and location for reactive power compensating device. The IEEE 14 bus system is tested and the simulation results are presented in this paper.
基于人工神经网络的电力系统电压稳定分析
电压稳定分析对确定电力系统的稳定状态起着至关重要的作用。本文采用全局电压稳定指标进行估计,利用人工神经网络进行电压稳定评估。采用全局电压稳定指标实现了多层误差级联前馈反向传播神经网络和径向基函数神经网络的反向传播学习算法。该指标测试方法在确定电网电压崩溃点和无功补偿装置位置方面具有权威性。本文对ieee14总线系统进行了测试并给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信