A Bayesian Approach for Identification of Additive Outlier in AR(p)

Jitendra Kumar, Saurabh Kumar
{"title":"A Bayesian Approach for Identification of Additive Outlier in AR(p)","authors":"Jitendra Kumar, Saurabh Kumar","doi":"10.16929/AS/2019.1877.139","DOIUrl":null,"url":null,"abstract":". Time series is the way of data analysis and modelling in which present observation is retrieved based on past observations which is called ARIMA model in case of linear dependency. If series is contaminated by an outlier, then it affects both order and parameter(s). The present paper deals an autoregressive (AR) model with an additive outlier under Bayesian prospective. For identification of an outlier, posterior odds ratio has been derived under suitable prior assumptions. An empirical analysis and realization is carried out to get applicability of proposed testing methodology. ´etudes de cas sont men´ees pour prouver l’applicabibilit´e de la m´ethodologie utilis´ee.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/AS/2019.1877.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Time series is the way of data analysis and modelling in which present observation is retrieved based on past observations which is called ARIMA model in case of linear dependency. If series is contaminated by an outlier, then it affects both order and parameter(s). The present paper deals an autoregressive (AR) model with an additive outlier under Bayesian prospective. For identification of an outlier, posterior odds ratio has been derived under suitable prior assumptions. An empirical analysis and realization is carried out to get applicability of proposed testing methodology. ´etudes de cas sont men´ees pour prouver l’applicabibilit´e de la m´ethodologie utilis´ee.
一种识别AR中附加异常值的贝叶斯方法(p)
. 时间序列是一种数据分析和建模的方法,在线性依赖的情况下,根据过去的观测值来检索当前的观测值,称为ARIMA模型。如果序列受到异常值的污染,那么它会影响顺序和参数。本文研究了贝叶斯前景下具有加性离群值的自回归(AR)模型。为了识别异常值,在适当的先验假设下推导了后验比值比。通过实证分析和实现,验证了所提出的测试方法的适用性。“研究人员”从“研究人员”到“研究人员”,从“研究人员”到“研究人员”,从“研究人员”到“研究人员”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信