On Design of Linear Minimum-Entropy Predictor

X. Wang, Xiaolin Wu
{"title":"On Design of Linear Minimum-Entropy Predictor","authors":"X. Wang, Xiaolin Wu","doi":"10.1109/MMSP.2007.4412852","DOIUrl":null,"url":null,"abstract":"Linear predictors for lossless data compression should ideally minimize the entropy of prediction errors. But in current practice predictors of least-square type are used instead. In this paper, we formulate and solve the linear minimum-entropy predictor design problem as one of convex or quasiconvex programming. The proposed minimum-entropy design algorithms are derived from the well-known fact that prediction errors of most signals obey generalized Gaussian distribution. Empirical results and analysis are presented to demonstrate the superior performance of the linear minimum-entropy predictor over the traditional least-square counterpart for lossless coding.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Linear predictors for lossless data compression should ideally minimize the entropy of prediction errors. But in current practice predictors of least-square type are used instead. In this paper, we formulate and solve the linear minimum-entropy predictor design problem as one of convex or quasiconvex programming. The proposed minimum-entropy design algorithms are derived from the well-known fact that prediction errors of most signals obey generalized Gaussian distribution. Empirical results and analysis are presented to demonstrate the superior performance of the linear minimum-entropy predictor over the traditional least-square counterpart for lossless coding.
线性最小熵预测器的设计
用于无损数据压缩的线性预测器应该理想地使预测误差的熵最小化。但在目前的实践中,使用最小二乘类型的预测因子来代替。本文将线性最小熵预测器设计问题表述为一个凸规划或拟凸规划问题。所提出的最小熵设计算法是根据大多数信号的预测误差服从广义高斯分布这一众所周知的事实推导出来的。经验结果和分析表明,线性最小熵预测器优于传统的最小二乘对应器,用于无损编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信