Tuning the Parameters of Cutting Machines Using Particle Swarm Optimization: A Comparison Study

A. Sheta, Malik Braik, A. Baareh
{"title":"Tuning the Parameters of Cutting Machines Using Particle Swarm Optimization: A Comparison Study","authors":"A. Sheta, Malik Braik, A. Baareh","doi":"10.1109/JEEIT58638.2023.10185775","DOIUrl":null,"url":null,"abstract":"In this study, we conducted experiments to model the temperature of two manufacturing processes using various metaheuristic search algorithms. The two processes adopted were the P05 horny steel tool and the AISI304 stainless steel castings machines. Our approach involves building a data-driven model, as traditional search methods for modeling manufac-turing problems often need help finding the global optimum when faced with a complex objective function and numerous decision variables. Bio-inspired metaheuristic search algorithms have shown promising performance in handling multi-model optimization functions, and efficiently exploring the search space to attain more global results. We applied several metaheuristic search algorithms to find the optimal tuning parameters of a temperature-based model. The results from the case studies demonstrate that Particle Swarm Optimization (PSO) provided the best performance in tuning model parameters, resulting in minimum modeling error.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEEIT58638.2023.10185775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we conducted experiments to model the temperature of two manufacturing processes using various metaheuristic search algorithms. The two processes adopted were the P05 horny steel tool and the AISI304 stainless steel castings machines. Our approach involves building a data-driven model, as traditional search methods for modeling manufac-turing problems often need help finding the global optimum when faced with a complex objective function and numerous decision variables. Bio-inspired metaheuristic search algorithms have shown promising performance in handling multi-model optimization functions, and efficiently exploring the search space to attain more global results. We applied several metaheuristic search algorithms to find the optimal tuning parameters of a temperature-based model. The results from the case studies demonstrate that Particle Swarm Optimization (PSO) provided the best performance in tuning model parameters, resulting in minimum modeling error.
基于粒子群优化的切割机参数整定的比较研究
在这项研究中,我们进行了实验,利用各种元启发式搜索算法来模拟两个制造过程的温度。采用的两种工艺分别是P05角钢工具和AISI304不锈钢铸造机。我们的方法包括建立一个数据驱动的模型,因为传统的制造问题建模的搜索方法在面对复杂的目标函数和众多的决策变量时往往需要帮助找到全局最优。生物启发式元启发式搜索算法在处理多模型优化函数、有效地探索搜索空间以获得更全局的结果方面表现出了良好的性能。我们应用了几种元启发式搜索算法来寻找基于温度的模型的最优调谐参数。实例研究结果表明,粒子群算法在优化模型参数方面具有最佳性能,建模误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信