A Language Modeling Approach to Atomic Human Action Recognition

Yu-Ming Liang, S. Shih, A. C. Shih, H. Liao, Cheng-Chung Lin
{"title":"A Language Modeling Approach to Atomic Human Action Recognition","authors":"Yu-Ming Liang, S. Shih, A. C. Shih, H. Liao, Cheng-Chung Lin","doi":"10.1109/MMSP.2007.4412874","DOIUrl":null,"url":null,"abstract":"Visual analysis of human behavior has generated considerable interest in the field of computer vision because it has a wide spectrum of potential applications. Atomic human action recognition is an important part of a human behavior analysis system. In this paper, we propose a language modeling framework for this task. The framework is comprised of two modules: a posture labeling module, and an atomic action learning and recognition module. A posture template selection algorithm is developed based on a modified shape context matching technique. The posture templates form a codebook that is used to convert input posture sequences into training symbol sequences or recognition symbol sequences. Finally, a variable-length Markov model technique is applied to learn and recognize the input symbol sequences of atomic actions. Experiments on real data demonstrate the efficacy of the proposed system.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Visual analysis of human behavior has generated considerable interest in the field of computer vision because it has a wide spectrum of potential applications. Atomic human action recognition is an important part of a human behavior analysis system. In this paper, we propose a language modeling framework for this task. The framework is comprised of two modules: a posture labeling module, and an atomic action learning and recognition module. A posture template selection algorithm is developed based on a modified shape context matching technique. The posture templates form a codebook that is used to convert input posture sequences into training symbol sequences or recognition symbol sequences. Finally, a variable-length Markov model technique is applied to learn and recognize the input symbol sequences of atomic actions. Experiments on real data demonstrate the efficacy of the proposed system.
原子人类动作识别的语言建模方法
人类行为的视觉分析在计算机视觉领域引起了相当大的兴趣,因为它具有广泛的潜在应用。原子行为识别是人类行为分析系统的重要组成部分。在本文中,我们提出了一个语言建模框架。该框架由两个模块组成:姿态标记模块和原子动作学习与识别模块。提出了一种基于改进的形状上下文匹配技术的姿态模板选择算法。姿势模板形成代码本,用于将输入姿势序列转换为训练符号序列或识别符号序列。最后,采用变长马尔可夫模型技术对原子动作的输入符号序列进行学习和识别。实际数据实验证明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信