An approach to singularity from the extended Hensel construction

Tateaki Sasaki, D. Inaba, K. Katamachi
{"title":"An approach to singularity from the extended Hensel construction","authors":"Tateaki Sasaki, D. Inaba, K. Katamachi","doi":"10.1145/1113439.1113454","DOIUrl":null,"url":null,"abstract":"Let <i>F</i>(<i>x,u</i>), with (<i>u</i>) = (<i>u</i><inf>1</inf>,...,<i>u</i><inf>ℓ</inf>), be an irreducible multivariate polynomial over C, having singularity at the origin, and let <i>F</i><inf>New</inf>(<i>x,u</i>) be the so-called Newton polynomial for <i>F</i>(<i>x,u</i>). The extended Hensel construction (EHC in short) of <i>F</i>(<i>x,u</i>) allows us to compute the Puiseux-series roots if ℓ = 1 and, for ℓ ≥ 2, the roots which are fractional-power series w.r.t. the (weighted) total-degree of <i>u</i><inf>1</inf>,...,<i>u</i><inf>ℓ</inf>. This paper investigates the behavior of algebraic function χ(<i>u</i>) around the origin, where χ(<i>u</i>) is a root of <i>F</i>(<i>x,u</i>), w.r.t. the variable <i>x</i>, and clarifies a close relationship between the singularity of χ(<i>u</i>) and the corresponding Hensel factor. Let the irreducible factorization of <i>F</i><inf>New</inf> in C[<i>x,u</i>] be <i>F</i><inf>New</inf>(<i>x,u</i>)<sup><i>m</i></sup><inf>1</inf>...<i>H</i><inf><i>r</i></inf>(<i>x,u</i>)<sup><i>m</i></sup>. It is shown that: 1) the procedure of EHC distributes the factors of the leading coefficient of <i>F</i>(<i>x,u</i>) to mutually prime factors of <i>F</i><inf>New</inf> in a unique way, and the \"scaled-root\" <i>x</i>(<i>u</i>) becomes infinity only at the zero-points of the leading coefficient of the corresponding factor of <i>F</i><inf>New</inf>(<i>x,u</i>); 2) the behavior of χ(<i>u</i>) around the origin changes singularly at zero-points of resultant(<i>H</i><inf><i>i</i></inf>, <i>H</i><inf><i>j</i></inf>) (∀<i>i</i> ≠ <i>j</i>), resultant(<i>H</i><inf>i</inf>,∂<i>H<inf>i</inf></i>/∂<i>x</i>) (<i>i</i> = 1,...,<i>r</i>), and <i>fcirc;</i><inf>ℓ</inf> (ℓ = 1,...,ρ), where <i>f</i><inf>ℓ</inf> is the sum of terms plotted at the ℓ-th vertex of bottom sides of the \"Newton polygon\". We explain these points not only theoretically but also by examples.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1113439.1113454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let F(x,u), with (u) = (u1,...,u), be an irreducible multivariate polynomial over C, having singularity at the origin, and let FNew(x,u) be the so-called Newton polynomial for F(x,u). The extended Hensel construction (EHC in short) of F(x,u) allows us to compute the Puiseux-series roots if ℓ = 1 and, for ℓ ≥ 2, the roots which are fractional-power series w.r.t. the (weighted) total-degree of u1,...,u. This paper investigates the behavior of algebraic function χ(u) around the origin, where χ(u) is a root of F(x,u), w.r.t. the variable x, and clarifies a close relationship between the singularity of χ(u) and the corresponding Hensel factor. Let the irreducible factorization of FNew in C[x,u] be FNew(x,u)m1...Hr(x,u)m. It is shown that: 1) the procedure of EHC distributes the factors of the leading coefficient of F(x,u) to mutually prime factors of FNew in a unique way, and the "scaled-root" x(u) becomes infinity only at the zero-points of the leading coefficient of the corresponding factor of FNew(x,u); 2) the behavior of χ(u) around the origin changes singularly at zero-points of resultant(Hi, Hj) (∀ij), resultant(Hi,∂Hi/∂x) (i = 1,...,r), and fcirc; (ℓ = 1,...,ρ), where f is the sum of terms plotted at the ℓ-th vertex of bottom sides of the "Newton polygon". We explain these points not only theoretically but also by examples.
从扩展Hensel构造出发的奇点逼近
设F(x,u),其中(u) = (u1,…,u)是C上一个不可约的多元多项式,在原点有奇点,设FNew(x,u)是F(x,u)的牛顿多项式。F(x,u)的扩展Hensel构造(简写为EHC)允许我们计算当r = 1时的puiseux级数的根,当r≥2时,可以计算分数幂级数的根。本文研究了代数函数χ(u)在原点附近的性质,其中χ(u)是F(x,u)的一个根,与变量x无关,并阐明了χ(u)的奇异性与相应的Hensel因子之间的密切关系。设C[x,u]中FNew的不可约分解为FNew(x,u)m1…Hr(x,u)m。结果表明:1)EHC过程以唯一方式将F(x,u)的导系数因子分配给FNew的互素数因子,且“标度根”x(u)仅在FNew(x,u)的对应导系数的零点处变为无穷;2) χ(u)在原点周围的行为在结式(Hi, Hj)(∀i≠j)、结式(Hi,∂Hi/∂x) (i = 1,…,r)和fcirc; r (r = 1,…,ρ)的零点处发生奇点变化,其中f (r)是在“牛顿多边形”底边的第r -顶点处绘制的项的和。我们不仅从理论上而且用实例来说明这些要点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信