Multi-Attention Network for Sentiment Analysis

Tingting Du, Yunyin Huang, X. Wu, Huiyou Chang
{"title":"Multi-Attention Network for Sentiment Analysis","authors":"Tingting Du, Yunyin Huang, X. Wu, Huiyou Chang","doi":"10.1145/3278293.3278295","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is an active research area in natural language processing. However, most existing methods use extra data such as pre-specified syntactic structure or user preference information. In this work, we propose a multiple attention network (MAN) that learns both word- and phrase-level features for sentiment analysis. MAN uses vector representation of the input sequence as target in the first attention layer to locate the words that contribute to the sentence sentiment. However, although an isolated word may indicate subjectivity, there may be insufficient context to determine sentiment orientation. We argue that the sentence sentiment often requires multiple steps of reasoning. Thus, we apply the second attention layer to explore the phrase information around the keyword. We experiment our method on three benchmark datasets and the results show that our model achieves state-of-the-art performance without any extra data. The visualization of the attention layers illustrates the effectiveness of our attention based model.","PeriodicalId":183745,"journal":{"name":"Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3278293.3278295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sentiment analysis is an active research area in natural language processing. However, most existing methods use extra data such as pre-specified syntactic structure or user preference information. In this work, we propose a multiple attention network (MAN) that learns both word- and phrase-level features for sentiment analysis. MAN uses vector representation of the input sequence as target in the first attention layer to locate the words that contribute to the sentence sentiment. However, although an isolated word may indicate subjectivity, there may be insufficient context to determine sentiment orientation. We argue that the sentence sentiment often requires multiple steps of reasoning. Thus, we apply the second attention layer to explore the phrase information around the keyword. We experiment our method on three benchmark datasets and the results show that our model achieves state-of-the-art performance without any extra data. The visualization of the attention layers illustrates the effectiveness of our attention based model.
情感分析的多注意网络
情感分析是自然语言处理中一个活跃的研究领域。但是,大多数现有方法使用额外的数据,如预先指定的语法结构或用户首选项信息。在这项工作中,我们提出了一个多注意网络(MAN),它可以学习单词和短语级别的特征来进行情感分析。MAN在第一关注层使用输入序列的向量表示作为目标来定位对句子情感有贡献的单词。然而,虽然一个孤立的词可能表明主观性,但可能没有足够的上下文来确定情感倾向。我们认为句子情感通常需要多个推理步骤。因此,我们使用第二注意层来探索关键字周围的短语信息。我们在三个基准数据集上实验了我们的方法,结果表明我们的模型在没有任何额外数据的情况下达到了最先进的性能。注意层的可视化说明了我们基于注意的模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信