Kernel subspace-based anomaly detection for hyperspectral imagery

N. Nasrabadi
{"title":"Kernel subspace-based anomaly detection for hyperspectral imagery","authors":"N. Nasrabadi","doi":"10.1109/WHISPERS.2009.5289028","DOIUrl":null,"url":null,"abstract":"This paper provides a performance comparison of various linear and nonlinear subspace-based anomaly detectors. Three different techniques, Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST), are used to generate the linear projection subspaces. Each of these three linear methods is then extended to its corresponding nonlinear kernel version. The well-known Reed-Xiaoli (RX) anomaly detector and its kernel version (kernel RX) are also implemented. Comparisons between all linear and non-linear anomaly detectors are made using receiver operating characteristics (ROC) curves for several hyperspectral imagery.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper provides a performance comparison of various linear and nonlinear subspace-based anomaly detectors. Three different techniques, Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation Transform (EST), are used to generate the linear projection subspaces. Each of these three linear methods is then extended to its corresponding nonlinear kernel version. The well-known Reed-Xiaoli (RX) anomaly detector and its kernel version (kernel RX) are also implemented. Comparisons between all linear and non-linear anomaly detectors are made using receiver operating characteristics (ROC) curves for several hyperspectral imagery.
基于核子空间的高光谱图像异常检测
本文比较了各种基于子空间的线性和非线性异常探测器的性能。三种不同的技术,主成分分析(PCA), Fisher线性判别(FLD)分析和特征空间分离变换(EST),用于生成线性投影子空间。然后将这三种线性方法中的每一种方法扩展到其相应的非线性核版本。还实现了著名的Reed-Xiaoli (RX)异常检测器及其内核版本(kernel RX)。利用多幅高光谱图像的接收机工作特征(ROC)曲线对所有线性和非线性异常检测器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信