Reinforcement learning approach to implementation of individual controllers in data centre control system

Y. Berezovskaya, Chen-Wei Yang, V. Vyatkin
{"title":"Reinforcement learning approach to implementation of individual controllers in data centre control system","authors":"Y. Berezovskaya, Chen-Wei Yang, V. Vyatkin","doi":"10.1109/INDIN51773.2022.9976179","DOIUrl":null,"url":null,"abstract":"Contemporary data centres consume electricity on an industrial scale and require control to improve energy efficiency and maintain high availability. The article proposes an idea and structure of the framework supporting development and validation of the multi-agent control for the energy-efficient data centre. The framework comprises two subsystems: the modelling toolbox and the controlling toolbox. This work focuses on such essential components of the controlling toolbox, as an individual controller. The reinforcement learning approach is applied to the controllers’ implementation. The server fan controller, named SF agent, is implemented based on the framework infrastructure and reinforcement learning approach. The agent’s capability of energy-saving is demonstrated.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary data centres consume electricity on an industrial scale and require control to improve energy efficiency and maintain high availability. The article proposes an idea and structure of the framework supporting development and validation of the multi-agent control for the energy-efficient data centre. The framework comprises two subsystems: the modelling toolbox and the controlling toolbox. This work focuses on such essential components of the controlling toolbox, as an individual controller. The reinforcement learning approach is applied to the controllers’ implementation. The server fan controller, named SF agent, is implemented based on the framework infrastructure and reinforcement learning approach. The agent’s capability of energy-saving is demonstrated.
数据中心控制系统中单个控制器的强化学习实现方法
现代数据中心以工业规模消耗电力,需要控制以提高能源效率并保持高可用性。本文提出了一种支持节能数据中心多智能体控制开发和验证的框架思想和结构。该框架包括两个子系统:建模工具箱和控制工具箱。这项工作的重点是控制工具箱的这些基本组件,作为一个单独的控制器。将强化学习方法应用于控制器的实现。服务器风扇控制器命名为SF agent,是基于框架基础结构和强化学习方法实现的。验证了该代理的节能能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信