Liang Guo, I. Clements, Dustin Li, R. Bellamkonda, S. DeWeerth
{"title":"A conformable microelectrode array (cMEA) with integrated electronics for peripheral nerve interfacing","authors":"Liang Guo, I. Clements, Dustin Li, R. Bellamkonda, S. DeWeerth","doi":"10.1109/BIOCAS.2010.5709604","DOIUrl":null,"url":null,"abstract":"A high-resolution PDMS-based conformable microelectrode array (cMEA) with integrated electronics is implemented. The cMEA is incorporated into individual layers of a nanofiber-based nerve regeneration scaffold to create a novel regenerative electrode scaffold (RES) capable of establishing a stable, high-resolution peripheral nerve interface. The device features a compact size with an enhanced signal-to-noise ratio (SNR), as required by implantation applications. Preliminary characterizations of the device are performed using in vitro experimentations, including impedance spectroscopy and neural culturing.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"366 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A high-resolution PDMS-based conformable microelectrode array (cMEA) with integrated electronics is implemented. The cMEA is incorporated into individual layers of a nanofiber-based nerve regeneration scaffold to create a novel regenerative electrode scaffold (RES) capable of establishing a stable, high-resolution peripheral nerve interface. The device features a compact size with an enhanced signal-to-noise ratio (SNR), as required by implantation applications. Preliminary characterizations of the device are performed using in vitro experimentations, including impedance spectroscopy and neural culturing.