Learning aspects of interest from Gaze

GazeIn '13 Pub Date : 2013-12-13 DOI:10.1145/2535948.2535955
Kei Shimonishi, H. Kawashima, Ryo Yonetani, Erina Ishikawa, T. Matsuyama
{"title":"Learning aspects of interest from Gaze","authors":"Kei Shimonishi, H. Kawashima, Ryo Yonetani, Erina Ishikawa, T. Matsuyama","doi":"10.1145/2535948.2535955","DOIUrl":null,"url":null,"abstract":"This paper presents a probabilistic framework to model the gaze generative process when a user is browsing a content consisting of multiple regions. The model enables us to learn multiple aspects of interest from gaze data, to represent and estimate user's interest as a mixture of aspects, and to predict gaze behavior in a unified framework. We recorded gaze data of subjects when they were browsing a digital pictorial book, and confirmed the effectiveness of the proposed model in terms of predicting the gaze target.","PeriodicalId":403097,"journal":{"name":"GazeIn '13","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GazeIn '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535948.2535955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a probabilistic framework to model the gaze generative process when a user is browsing a content consisting of multiple regions. The model enables us to learn multiple aspects of interest from gaze data, to represent and estimate user's interest as a mixture of aspects, and to predict gaze behavior in a unified framework. We recorded gaze data of subjects when they were browsing a digital pictorial book, and confirmed the effectiveness of the proposed model in terms of predicting the gaze target.
从凝视中学习兴趣的各个方面
本文提出了一个概率框架来模拟用户浏览由多个区域组成的内容时的凝视生成过程。该模型使我们能够从注视数据中学习兴趣的多个方面,将用户的兴趣作为多个方面的混合来表示和估计,并在一个统一的框架中预测注视行为。我们记录了被试在浏览电子画册时的凝视数据,并证实了所提模型在预测凝视目标方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信